from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint | |
from warnings import filterwarnings | |
filterwarnings('ignore') | |
""" Trainer """ | |
async def train(dict configuration, X_train, y_train, X_test, y_test): | |
cdef object early_stopping = EarlyStopping( | |
monitor = 'val_loss', | |
patience = 5, | |
mode = 'min' | |
) | |
cdef object model_checkpoint = ModelCheckpoint( | |
filepath = configuration['model_file'], | |
save_best_only = True, | |
monitor = 'val_loss', | |
mode = 'min' | |
) | |
cdef object history = configuration['model'].fit( | |
X_train, y_train, | |
epochs = configuration['epochs'], | |
batch_size = configuration['batch_size'], | |
validation_data = (X_test, y_test), | |
callbacks = [ early_stopping, model_checkpoint ] | |
) | |
return history | |