tebakaja's picture
[ update ]: Cythonize Machine Learning Utilities
e8ac98a
raw
history blame
1.66 kB
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, LSTM, Dense, Dropout
from warnings import filterwarnings
filterwarnings('ignore')
""" GRU (Gated Recurrent Units) Model """
async def gru_model(input_shape):
cdef object model = Sequential([
GRU(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model
""" LSTM (Long Short-Term Memory) Model """
async def lstm_model(input_shape):
cdef object model = Sequential([
LSTM(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model
"""
LSTM (Long Short-Term Memory) and
GRU (Gated Recurrent Units) Model
"""
async def lstm_gru_model(input_shape):
cdef object model = Sequential([
LSTM(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model