|
import os |
|
from joblib import load |
|
from numpy import append, expand_dims |
|
from pandas import read_json, to_datetime, Timedelta |
|
from tensorflow.keras.models import load_model |
|
import cython |
|
|
|
cdef class Utilities: |
|
async def forecasting_utils(self, int sequence_length, |
|
int days, str model_name, str algorithm) -> tuple: |
|
cdef str model_path = os.path.join(f'./resources/algorithms/{algorithm}/models', |
|
f'{model_name}.keras') |
|
model = load_model(model_path) |
|
|
|
cdef str dataframe_path = os.path.join(f'./resources/algorithms/{algorithm}/posttrained', |
|
f'{model_name}-posttrained.json') |
|
dataframe = read_json(dataframe_path) |
|
dataframe.set_index('Date', inplace=True) |
|
|
|
minmax_scaler = load(os.path.join(f'./resources/algorithms/{algorithm}/pickles', |
|
f'{model_name}_minmax_scaler.pickle')) |
|
standard_scaler = load(os.path.join(f'./resources/algorithms/{algorithm}/pickles', |
|
f'{model_name}_standard_scaler.pickle')) |
|
|
|
|
|
lst_seq = dataframe[-sequence_length:].values |
|
lst_seq = expand_dims(lst_seq, axis=0) |
|
|
|
cdef dict predicted_prices = {} |
|
last_date = to_datetime(dataframe.index[-1]) |
|
|
|
for _ in range(days): |
|
predicted_price = model.predict(lst_seq) |
|
last_date = last_date + Timedelta(days=1) |
|
|
|
predicted_prices[last_date] = minmax_scaler.inverse_transform(predicted_price) |
|
predicted_prices[last_date] = standard_scaler.inverse_transform(predicted_prices[last_date]) |
|
|
|
lst_seq = append(lst_seq[:, 1:, :], [predicted_price], axis=1) |
|
|
|
predictions = [ |
|
{'date': date.strftime('%Y-%m-%d'), 'price': float(price)} \ |
|
for date, price in predicted_prices.items() |
|
] |
|
|
|
|
|
df_date = dataframe.index[-sequence_length:].values |
|
df_date = [to_datetime(date) for date in df_date] |
|
|
|
dataframe[['Close']] = minmax_scaler.inverse_transform(dataframe) |
|
dataframe[['Close']] = standard_scaler.inverse_transform(dataframe) |
|
df_close = dataframe.iloc[-sequence_length:]['Close'].values |
|
|
|
actuals = [ |
|
{'date': date.strftime('%Y-%m-%d'), 'price': close} \ |
|
for date, close in zip(df_date, df_close) |
|
] |
|
|
|
return actuals, predictions |
|
|
|
|