Spaces:
Runtime error
Runtime error
File size: 1,773 Bytes
c769220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import requests
import torch
from io import BytesIO
from PIL import Image
from transformers import ViTImageProcessor, ViTForImageClassification
# Init model, transforms
@st.cache_resource
def get_model_transformers():
model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
transforms = ViTImageProcessor.from_pretrained('nateraw/vit-age-classifier')
return model, transforms
st.title("๋์ด๋ฅผ ์์ธกํด๋ด
์๋ค!")
uploaded_file = st.file_uploader("๋์ด๋ฅผ ์์ธกํ ์ฌ๋์ ์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํ์ธ์.", type=["jpg", "jpeg", "png", 'gif', 'webp'])
if uploaded_file:
st.write(f'์
๋ก๋๋ ํ์ผ ์ด๋ฆ: {uploaded_file}')
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Get example image from official fairface repo + read it in as an image
r = requests.get('https://github.com/dchen236/FairFace/blob/master/detected_faces/race_Asian_face0.jpg?raw=true')
im = Image.open(uploaded_file)
model, transforms = get_model_transformers()
# Transform our image and pass it through the model
inputs = transforms(im, return_tensors='pt')
output = model(**inputs)
# Predicted Class probabilities
proba = output.logits.softmax(1)
values, indices = torch.topk(proba, k=5)
result_dict = {model.config.id2label[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
first_result = list(result_dict.keys())[0]
print(f'predicted result:{result_dict}')
print(f'first_result: {first_result}')
st.header('๊ฒฐ๊ณผ')
st.subheader(f'์์ธก๋ ๋์ด๋ {first_result} ์
๋๋ค')
for key, value in result_dict.items():
st.write(f'{key}: {value * 100:.2f}%') |