Commit
·
4014f2e
1
Parent(s):
765cbc1
feat: adicionar armazenamento de métricas de inferência em banco de dados SQLite e criar gráficos de desempenho
Browse files
app.py
CHANGED
|
@@ -7,6 +7,8 @@ import onnxruntime as ort
|
|
| 7 |
from collections import deque
|
| 8 |
import gradio as gr
|
| 9 |
import os
|
|
|
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
| 12 |
# Model info
|
|
@@ -52,6 +54,66 @@ def download_model():
|
|
| 52 |
raise e
|
| 53 |
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
class SignatureDetector:
|
| 56 |
def __init__(self, model_path):
|
| 57 |
self.model_path = model_path
|
|
@@ -64,23 +126,101 @@ class SignatureDetector:
|
|
| 64 |
MODEL_PATH, providers=["CPUExecutionProvider"]
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
self.inference_times = deque(maxlen=50) # Store last 50 inference times
|
| 69 |
-
self.total_inferences = 0
|
| 70 |
-
self.avg_inference_time = 0
|
| 71 |
|
| 72 |
def update_metrics(self, inference_time):
|
| 73 |
-
|
| 74 |
-
self.
|
| 75 |
-
self.avg_inference_time = sum(self.inference_times) / len(self.inference_times)
|
| 76 |
|
| 77 |
def get_metrics(self):
|
|
|
|
| 78 |
return {
|
| 79 |
-
"times":
|
| 80 |
-
"total_inferences": self.
|
| 81 |
-
"avg_time": self.
|
| 82 |
}
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def preprocess(self, img):
|
| 85 |
# Convert PIL Image to cv2 format
|
| 86 |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
|
@@ -249,64 +389,8 @@ def create_gradio_interface():
|
|
| 249 |
}
|
| 250 |
)
|
| 251 |
|
| 252 |
-
#
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# Configuração do estilo dos plots
|
| 256 |
-
plt.style.use("dark_background")
|
| 257 |
-
|
| 258 |
-
# Criar figura do histograma
|
| 259 |
-
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
| 260 |
-
hist_ax.set_facecolor("#f0f0f5")
|
| 261 |
-
hist_data.hist(
|
| 262 |
-
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
|
| 263 |
-
)
|
| 264 |
-
hist_ax.set_title(
|
| 265 |
-
"Distribuição dos Tempos de Inferência",
|
| 266 |
-
pad=15,
|
| 267 |
-
fontsize=12,
|
| 268 |
-
color="#1f2937",
|
| 269 |
-
)
|
| 270 |
-
hist_ax.set_xlabel("Tempo (ms)", color="#374151")
|
| 271 |
-
hist_ax.set_ylabel("Frequência", color="#374151")
|
| 272 |
-
hist_ax.tick_params(colors="#4b5563")
|
| 273 |
-
hist_ax.grid(True, linestyle="--", alpha=0.3)
|
| 274 |
-
|
| 275 |
-
# Criar figura do gráfico de linha
|
| 276 |
-
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
| 277 |
-
line_ax.set_facecolor("#f0f0f5")
|
| 278 |
-
line_data.plot(
|
| 279 |
-
x="Inferência",
|
| 280 |
-
y="Tempo (ms)",
|
| 281 |
-
ax=line_ax,
|
| 282 |
-
color="#4F46E5",
|
| 283 |
-
alpha=0.7,
|
| 284 |
-
label="Tempo",
|
| 285 |
-
)
|
| 286 |
-
line_data.plot(
|
| 287 |
-
x="Inferência",
|
| 288 |
-
y="Média",
|
| 289 |
-
ax=line_ax,
|
| 290 |
-
color="#DC2626",
|
| 291 |
-
linestyle="--",
|
| 292 |
-
label="Média",
|
| 293 |
-
)
|
| 294 |
-
line_ax.set_title(
|
| 295 |
-
"Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937"
|
| 296 |
-
)
|
| 297 |
-
line_ax.set_xlabel("Número da Inferência", color="#374151")
|
| 298 |
-
line_ax.set_ylabel("Tempo (ms)", color="#374151")
|
| 299 |
-
line_ax.tick_params(colors="#4b5563")
|
| 300 |
-
line_ax.grid(True, linestyle="--", alpha=0.3)
|
| 301 |
-
line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none")
|
| 302 |
-
|
| 303 |
-
# Ajustar layout
|
| 304 |
-
hist_fig.tight_layout()
|
| 305 |
-
line_fig.tight_layout()
|
| 306 |
-
|
| 307 |
-
# Fechar as figuras para liberar memória
|
| 308 |
-
plt.close(hist_fig)
|
| 309 |
-
plt.close(line_fig)
|
| 310 |
|
| 311 |
return (
|
| 312 |
output_image,
|
|
@@ -428,6 +512,13 @@ def create_gradio_interface():
|
|
| 428 |
outputs=[output_image, total_inferences, hist_plot, line_plot],
|
| 429 |
)
|
| 430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
return iface
|
| 432 |
|
| 433 |
|
|
|
|
| 7 |
from collections import deque
|
| 8 |
import gradio as gr
|
| 9 |
import os
|
| 10 |
+
import sqlite3
|
| 11 |
+
from datetime import datetime
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
|
| 14 |
# Model info
|
|
|
|
| 54 |
raise e
|
| 55 |
|
| 56 |
|
| 57 |
+
class MetricsStorage:
|
| 58 |
+
def __init__(self, db_path="metrics.db"):
|
| 59 |
+
self.db_path = db_path
|
| 60 |
+
self.setup_database()
|
| 61 |
+
|
| 62 |
+
def setup_database(self):
|
| 63 |
+
"""Initialize the SQLite database and create tables if they don't exist"""
|
| 64 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 65 |
+
cursor = conn.cursor()
|
| 66 |
+
cursor.execute(
|
| 67 |
+
"""
|
| 68 |
+
CREATE TABLE IF NOT EXISTS inference_metrics (
|
| 69 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 70 |
+
inference_time REAL,
|
| 71 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 72 |
+
)
|
| 73 |
+
"""
|
| 74 |
+
)
|
| 75 |
+
conn.commit()
|
| 76 |
+
|
| 77 |
+
def add_metric(self, inference_time):
|
| 78 |
+
"""Add a new inference time measurement to the database"""
|
| 79 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 80 |
+
cursor = conn.cursor()
|
| 81 |
+
cursor.execute(
|
| 82 |
+
"INSERT INTO inference_metrics (inference_time) VALUES (?)",
|
| 83 |
+
(inference_time,),
|
| 84 |
+
)
|
| 85 |
+
conn.commit()
|
| 86 |
+
|
| 87 |
+
def get_recent_metrics(self, limit=50):
|
| 88 |
+
"""Get the most recent metrics from the database"""
|
| 89 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 90 |
+
cursor = conn.cursor()
|
| 91 |
+
cursor.execute(
|
| 92 |
+
"SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?",
|
| 93 |
+
(limit,),
|
| 94 |
+
)
|
| 95 |
+
results = cursor.fetchall()
|
| 96 |
+
return [r[0] for r in results]
|
| 97 |
+
|
| 98 |
+
def get_total_inferences(self):
|
| 99 |
+
"""Get the total number of inferences recorded"""
|
| 100 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 101 |
+
cursor = conn.cursor()
|
| 102 |
+
cursor.execute("SELECT COUNT(*) FROM inference_metrics")
|
| 103 |
+
return cursor.fetchone()[0]
|
| 104 |
+
|
| 105 |
+
def get_average_time(self, limit=50):
|
| 106 |
+
"""Get the average inference time from the most recent entries"""
|
| 107 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 108 |
+
cursor = conn.cursor()
|
| 109 |
+
cursor.execute(
|
| 110 |
+
"SELECT AVG(inference_time) FROM (SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?)",
|
| 111 |
+
(limit,),
|
| 112 |
+
)
|
| 113 |
+
result = cursor.fetchone()[0]
|
| 114 |
+
return result if result is not None else 0
|
| 115 |
+
|
| 116 |
+
|
| 117 |
class SignatureDetector:
|
| 118 |
def __init__(self, model_path):
|
| 119 |
self.model_path = model_path
|
|
|
|
| 126 |
MODEL_PATH, providers=["CPUExecutionProvider"]
|
| 127 |
)
|
| 128 |
|
| 129 |
+
self.metrics_storage = MetricsStorage()
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
def update_metrics(self, inference_time):
|
| 132 |
+
"""Update metrics in persistent storage"""
|
| 133 |
+
self.metrics_storage.add_metric(inference_time)
|
|
|
|
| 134 |
|
| 135 |
def get_metrics(self):
|
| 136 |
+
"""Get current metrics from storage"""
|
| 137 |
return {
|
| 138 |
+
"times": self.metrics_storage.get_recent_metrics(),
|
| 139 |
+
"total_inferences": self.metrics_storage.get_total_inferences(),
|
| 140 |
+
"avg_time": self.metrics_storage.get_average_time(),
|
| 141 |
}
|
| 142 |
|
| 143 |
+
def load_initial_metrics(self):
|
| 144 |
+
"""Load initial metrics for display"""
|
| 145 |
+
metrics = self.get_metrics()
|
| 146 |
+
|
| 147 |
+
if not metrics["times"]: # Se não houver dados
|
| 148 |
+
return None, None, None, None
|
| 149 |
+
|
| 150 |
+
# Criar plots data
|
| 151 |
+
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
|
| 152 |
+
line_data = pd.DataFrame(
|
| 153 |
+
{
|
| 154 |
+
"Inferência": range(len(metrics["times"])),
|
| 155 |
+
"Tempo (ms)": metrics["times"],
|
| 156 |
+
"Média": [metrics["avg_time"]] * len(metrics["times"]),
|
| 157 |
+
}
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Criar plots
|
| 161 |
+
hist_fig, line_fig = self.create_plots(hist_data, line_data)
|
| 162 |
+
|
| 163 |
+
return (
|
| 164 |
+
None, # output_image
|
| 165 |
+
f"Total de Inferências: {metrics['total_inferences']}",
|
| 166 |
+
hist_fig,
|
| 167 |
+
line_fig,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def create_plots(self, hist_data, line_data):
|
| 171 |
+
"""Helper method to create plots"""
|
| 172 |
+
plt.style.use("dark_background")
|
| 173 |
+
|
| 174 |
+
# Histograma
|
| 175 |
+
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
| 176 |
+
hist_ax.set_facecolor("#f0f0f5")
|
| 177 |
+
hist_data.hist(
|
| 178 |
+
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
|
| 179 |
+
)
|
| 180 |
+
hist_ax.set_title(
|
| 181 |
+
"Distribuição dos Tempos de Inferência",
|
| 182 |
+
pad=15,
|
| 183 |
+
fontsize=12,
|
| 184 |
+
color="#1f2937",
|
| 185 |
+
)
|
| 186 |
+
hist_ax.set_xlabel("Tempo (ms)", color="#374151")
|
| 187 |
+
hist_ax.set_ylabel("Frequência", color="#374151")
|
| 188 |
+
hist_ax.tick_params(colors="#4b5563")
|
| 189 |
+
hist_ax.grid(True, linestyle="--", alpha=0.3)
|
| 190 |
+
|
| 191 |
+
# Gráfico de linha
|
| 192 |
+
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
|
| 193 |
+
line_ax.set_facecolor("#f0f0f5")
|
| 194 |
+
line_data.plot(
|
| 195 |
+
x="Inferência",
|
| 196 |
+
y="Tempo (ms)",
|
| 197 |
+
ax=line_ax,
|
| 198 |
+
color="#4F46E5",
|
| 199 |
+
alpha=0.7,
|
| 200 |
+
label="Tempo",
|
| 201 |
+
)
|
| 202 |
+
line_data.plot(
|
| 203 |
+
x="Inferência",
|
| 204 |
+
y="Média",
|
| 205 |
+
ax=line_ax,
|
| 206 |
+
color="#DC2626",
|
| 207 |
+
linestyle="--",
|
| 208 |
+
label="Média",
|
| 209 |
+
)
|
| 210 |
+
line_ax.set_title(
|
| 211 |
+
"Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937"
|
| 212 |
+
)
|
| 213 |
+
line_ax.set_xlabel("Número da Inferência", color="#374151")
|
| 214 |
+
line_ax.set_ylabel("Tempo (ms)", color="#374151")
|
| 215 |
+
line_ax.tick_params(colors="#4b5563")
|
| 216 |
+
line_ax.grid(True, linestyle="--", alpha=0.3)
|
| 217 |
+
line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none")
|
| 218 |
+
|
| 219 |
+
hist_fig.tight_layout()
|
| 220 |
+
line_fig.tight_layout()
|
| 221 |
+
|
| 222 |
+
return hist_fig, line_fig
|
| 223 |
+
|
| 224 |
def preprocess(self, img):
|
| 225 |
# Convert PIL Image to cv2 format
|
| 226 |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
|
|
|
| 389 |
}
|
| 390 |
)
|
| 391 |
|
| 392 |
+
# Criar plots
|
| 393 |
+
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
return (
|
| 396 |
output_image,
|
|
|
|
| 512 |
outputs=[output_image, total_inferences, hist_plot, line_plot],
|
| 513 |
)
|
| 514 |
|
| 515 |
+
# Carregar métricas iniciais ao carregar a página
|
| 516 |
+
iface.load(
|
| 517 |
+
fn=detector.load_initial_metrics,
|
| 518 |
+
inputs=None,
|
| 519 |
+
outputs=[output_image, total_inferences, hist_plot, line_plot],
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
return iface
|
| 523 |
|
| 524 |
|