Spaces:
No application file
No application file
Update app.py
Browse files
app.py
CHANGED
@@ -18,27 +18,20 @@ ONNX_MODEL_FILE = "model.onnx"
|
|
18 |
# Shared tokenizer
|
19 |
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)
|
20 |
|
21 |
-
def
|
22 |
-
generated = input_ids.copy()
|
23 |
-
for _ in range(max_new_tokens):
|
24 |
-
outputs = session.run(None, {
|
25 |
-
"input_ids": generated,
|
26 |
-
"attention_mask": attention_mask
|
27 |
-
})
|
28 |
-
next_token_logits = outputs[0][:, -1, :]
|
29 |
-
next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1)
|
30 |
-
generated = np.concatenate((generated, next_token), axis=1)
|
31 |
-
attention_mask = np.concatenate(
|
32 |
-
(attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1)
|
33 |
-
if next_token[0][0] == tokenizer.eos_token_id:
|
34 |
-
break
|
35 |
-
return tokenizer.decode(generated[0], skip_special_tokens=True)
|
36 |
-
|
37 |
-
def compare_outputs(prompt):
|
38 |
summary_log = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# πΉ PyTorch Generate
|
41 |
-
pt_output_text = ""
|
42 |
pt_start = time.time()
|
43 |
try:
|
44 |
torch_inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -46,9 +39,10 @@ def compare_outputs(prompt):
|
|
46 |
pt_model.eval()
|
47 |
with torch.no_grad():
|
48 |
pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50)
|
49 |
-
|
|
|
|
|
50 |
pt_time = time.time() - pt_start
|
51 |
-
summary_log.append(f"π§ PyTorch output length: {pt_outputs.shape[1]} tokens | Time: {pt_time:.2f}s")
|
52 |
finally:
|
53 |
del pt_model
|
54 |
gc.collect()
|
@@ -56,22 +50,49 @@ def compare_outputs(prompt):
|
|
56 |
torch.cuda.empty_cache()
|
57 |
|
58 |
# πΉ ONNX Generate (Greedy)
|
59 |
-
ort_output_text = ""
|
60 |
ort_start = time.time()
|
61 |
ort_inputs = tokenizer(prompt, return_tensors="np")
|
62 |
onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
|
63 |
ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
ort_time = time.time() - ort_start
|
68 |
-
|
|
|
69 |
|
70 |
-
#
|
71 |
-
summary_log.append(
|
72 |
-
summary_log.append("
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
example_prompts = [
|
77 |
"Who was the first president of the United States?",
|
@@ -83,15 +104,20 @@ example_prompts = [
|
|
83 |
|
84 |
iface = gr.Interface(
|
85 |
fn=compare_outputs,
|
86 |
-
inputs=
|
|
|
|
|
|
|
87 |
outputs=[
|
88 |
gr.Textbox(label="PyTorch Output"),
|
89 |
gr.Textbox(label="ONNX Output"),
|
90 |
-
gr.Textbox(label="
|
|
|
|
|
91 |
],
|
92 |
-
title="ONNX vs PyTorch (Full Output
|
93 |
-
description="
|
94 |
-
examples=[[p] for p in example_prompts]
|
95 |
)
|
96 |
|
97 |
iface.launch()
|
|
|
18 |
# Shared tokenizer
|
19 |
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)
|
20 |
|
21 |
+
def compare_outputs(prompt, show_tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
summary_log = []
|
23 |
+
pt_output_text = ""
|
24 |
+
ort_output_text = ""
|
25 |
+
pt_tokens = []
|
26 |
+
ort_tokens = []
|
27 |
+
|
28 |
+
try:
|
29 |
+
import psutil
|
30 |
+
ram_used = f"{psutil.virtual_memory().used / 1e9:.2f} GB"
|
31 |
+
except:
|
32 |
+
ram_used = "Unavailable"
|
33 |
|
34 |
# πΉ PyTorch Generate
|
|
|
35 |
pt_start = time.time()
|
36 |
try:
|
37 |
torch_inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
39 |
pt_model.eval()
|
40 |
with torch.no_grad():
|
41 |
pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50)
|
42 |
+
pt_output_ids = pt_outputs[0].tolist()
|
43 |
+
pt_output_text = tokenizer.decode(pt_output_ids, skip_special_tokens=True)
|
44 |
+
pt_tokens = tokenizer.convert_ids_to_tokens(pt_output_ids)
|
45 |
pt_time = time.time() - pt_start
|
|
|
46 |
finally:
|
47 |
del pt_model
|
48 |
gc.collect()
|
|
|
50 |
torch.cuda.empty_cache()
|
51 |
|
52 |
# πΉ ONNX Generate (Greedy)
|
|
|
53 |
ort_start = time.time()
|
54 |
ort_inputs = tokenizer(prompt, return_tensors="np")
|
55 |
onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
|
56 |
ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
|
57 |
+
ort_output_ids = []
|
58 |
+
generated = ort_inputs["input_ids"]
|
59 |
+
attention_mask = ort_inputs["attention_mask"]
|
60 |
+
for _ in range(50):
|
61 |
+
ort_outputs = ort_session.run(None, {
|
62 |
+
"input_ids": generated,
|
63 |
+
"attention_mask": attention_mask
|
64 |
+
})
|
65 |
+
next_token_logits = ort_outputs[0][:, -1, :]
|
66 |
+
next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1)
|
67 |
+
ort_output_ids.append(next_token[0][0])
|
68 |
+
generated = np.concatenate((generated, next_token), axis=1)
|
69 |
+
attention_mask = np.concatenate((attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1)
|
70 |
+
if next_token[0][0] == tokenizer.eos_token_id:
|
71 |
+
break
|
72 |
ort_time = time.time() - ort_start
|
73 |
+
ort_tokens = tokenizer.convert_ids_to_tokens(ort_inputs["input_ids"][0].tolist() + ort_output_ids)
|
74 |
+
ort_output_text = tokenizer.decode(ort_inputs["input_ids"][0].tolist() + ort_output_ids, skip_special_tokens=True)
|
75 |
|
76 |
+
# π Summary
|
77 |
+
summary_log.append("| Model | Tokens | Time (s) | Time/Token |")
|
78 |
+
summary_log.append("|---------|--------|----------|------------|")
|
79 |
+
summary_log.append(f"| PyTorch | {len(pt_tokens)} | {pt_time:.2f} | {pt_time / max(1, len(pt_tokens)):.4f} |")
|
80 |
+
summary_log.append(f"| ONNX | {len(ort_tokens)} | {ort_time:.2f} | {ort_time / max(1, len(ort_tokens)):.4f} |")
|
81 |
+
summary_log.append(f"\nπ¦ RAM Used: {ram_used}")
|
82 |
+
summary_log.append(f"π Tokenizer: {tokenizer.name_or_path} | Vocab size: {tokenizer.vocab_size}")
|
83 |
+
summary_log.append("π οΈ Note: This ONNX export is FP32. INT8 + Vitis AI variants coming soon.")
|
84 |
|
85 |
+
outputs = [pt_output_text, ort_output_text, "\n".join(summary_log)]
|
86 |
+
|
87 |
+
if show_tokens:
|
88 |
+
outputs += [
|
89 |
+
", ".join(pt_tokens),
|
90 |
+
", ".join(ort_tokens)
|
91 |
+
]
|
92 |
+
else:
|
93 |
+
outputs += ["", ""]
|
94 |
+
|
95 |
+
return outputs
|
96 |
|
97 |
example_prompts = [
|
98 |
"Who was the first president of the United States?",
|
|
|
104 |
|
105 |
iface = gr.Interface(
|
106 |
fn=compare_outputs,
|
107 |
+
inputs=[
|
108 |
+
gr.Textbox(lines=2, placeholder="Enter a prompt..."),
|
109 |
+
gr.Checkbox(label="Show Token IDs")
|
110 |
+
],
|
111 |
outputs=[
|
112 |
gr.Textbox(label="PyTorch Output"),
|
113 |
gr.Textbox(label="ONNX Output"),
|
114 |
+
gr.Textbox(label="Evaluation Summary"),
|
115 |
+
gr.Textbox(label="PyTorch Tokens"),
|
116 |
+
gr.Textbox(label="ONNX Tokens")
|
117 |
],
|
118 |
+
title="ONNX vs PyTorch (Full Output + Token Trace)",
|
119 |
+
description="Run both models on your prompt and compare output text, timing, and token traces. Sequential model loading avoids OOM.",
|
120 |
+
examples=[[p, False] for p in example_prompts]
|
121 |
)
|
122 |
|
123 |
iface.launch()
|