import gradio as gr import numpy as np import onnxruntime as ort from transformers import AutoTokenizer, AutoModelForCausalLM import torch from huggingface_hub import hf_hub_download, HfFolder token = HfFolder.get_token() or os.getenv("HF_TOKEN") HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407" HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32" ONNX_MODEL_FILE = "model.onnx" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token) # Load PyTorch model pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token) pt_model.eval() # Load ONNX model onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE) onnx_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"]) def compare_outputs(prompt): inputs = tokenizer(prompt, return_tensors="np", padding=False) torch_inputs = tokenizer(prompt, return_tensors="pt") # Run PyTorch with torch.no_grad(): pt_outputs = pt_model(**torch_inputs).logits pt_top = torch.topk(pt_outputs[0, -1], 5).indices.tolist() # Run ONNX ort_outputs = onnx_session.run(None, { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"] }) ort_logits = ort_outputs[0] ort_top = np.argsort(ort_logits[0, -1])[::-1][:5].tolist() pt_tokens = tokenizer.convert_ids_to_tokens(pt_top) ort_tokens = tokenizer.convert_ids_to_tokens(ort_top) return f"PyTorch Top Tokens: {pt_tokens}", f"ONNX Top Tokens: {ort_tokens}" iface = gr.Interface(fn=compare_outputs, inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."), outputs=["text", "text"], title="ONNX vs PyTorch Model Comparison", description="Run both PyTorch and ONNX inference on a prompt and compare top predicted tokens.") iface.launch()