File size: 16,259 Bytes
cae3b1e
 
 
 
 
550e99c
cae3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4ec9a3
95eb934
2b48034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680fde
 
2b48034
cae3b1e
2680fde
cae3b1e
 
 
2b48034
cae3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1a892
 
 
 
 
 
 
 
cae3b1e
2b48034
cae3b1e
 
 
 
 
 
 
2b48034
 
 
 
 
cae3b1e
2b48034
cae3b1e
 
 
 
 
2b48034
 
cae3b1e
 
 
 
 
 
 
 
2b48034
cae3b1e
 
2b48034
cae3b1e
 
 
2b48034
 
cae3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b48034
 
 
 
 
 
 
cae3b1e
2b48034
cae3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b48034
cae3b1e
 
 
 
 
4b1a892
 
 
 
 
cae3b1e
2b48034
cae3b1e
 
 
 
 
4b1a892
 
 
 
 
cae3b1e
2b48034
cae3b1e
 
 
2b48034
cae3b1e
 
 
 
 
4b1a892
 
 
cae3b1e
 
2b48034
 
cae3b1e
 
 
 
 
 
 
 
4b1a892
cae3b1e
4b1a892
 
2b48034
cae3b1e
 
2b48034
 
cae3b1e
 
 
2b48034
cae3b1e
 
2b48034
cae3b1e
2b48034
 
 
 
 
cae3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import streamlit as st
from PyPDF2 import PdfReader
import langchain
from textwrap import dedent
import pandas as pd

from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_openai import ChatOpenAI
from langchain_community.chat_models import ChatGooglePalm
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import tempfile
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.document_loaders.pdf import PyPDFLoader
from langchain.document_loaders.word_document import UnstructuredWordDocumentLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.agents import load_tools
import os
from io import BytesIO
from langdetect import detect
from gtts import gTTS
from langchain.prompts import (
    ChatPromptTemplate
)




st.set_page_config(page_title='Personal Chatbot', page_icon='books')




st.markdown(
    """
    <style>
        [data-testid=stImage]{
            text-align: center;
            display: block;
            margin-left: 10%;
            margin-right:10%;
            width: 100%;
    }
    img {
        border-radius: 50%;
        align: center;
    }
    </style>
    """, unsafe_allow_html=True
)



st.image("tenlancer.png", width=80)

st.markdown("<h3 style='text-align: center; color: white;'> Knowledge Query Assistant </h3>", unsafe_allow_html=True)




st.markdown(
    """
    <style>
    [data-testid="stChatMessageContent"] p{
        font-size: 1.2rem;
        color: #404040
    }
    </style>
    """, unsafe_allow_html=True
)

GOOGLE_API_KEY = "AIzaSyD29fEos3V6S2L-AGSQgNu03GqZEIgJads"


#api_key2 = st.secrets["OPENAI_API_KEY"]
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY



st.sidebar.header("options")
st.sidebar.subheader("Please Choose the AI Engine")
use_google = st.sidebar.checkbox("Use Free AI", value =True)
use_openai = st.sidebar.checkbox("Use OpenAI with your API Key")

openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type="password")

def choose_llm():
    try:
        if use_google and use_openai:
            st.sidebar.warning("Please choose only one AI engine.")
            st.warning("Please choose only one AI engine.")
        elif use_google:
            llm = ChatGooglePalm(temperature=0.1)
        elif use_openai:
            if not openai_api_key:
                st.sidebar.warning("Please provide your OpenAI API Key.")
                st.warning("Please provide your OpenAI API Key.")
            llm = ChatOpenAI(api_key=openai_api_key, temperature=0.1)
        return llm
    except Exception as e:
        " "
         
            
llm = choose_llm()

if llm:
    st.sidebar.success("AI Engine selected")
else:
    st.sidebar.warning("Please choose an AI engine.")



@st.cache_resource(show_spinner=False)
def processing_csv_pdf_docx(uploaded_file):
    with st.spinner(text="Embedding Your Files"):

        # Read text from the uploaded PDF file
        data = []
        for file in uploaded_file:
            split_tup = os.path.splitext(file.name)
            file_extension = split_tup[1]
        
            if file_extension == ".pdf":

                with tempfile.NamedTemporaryFile(delete=False) as tmp_file1:
                    tmp_file1.write(file.getvalue())
                    tmp_file_path1 = tmp_file1.name
                    loader = PyPDFLoader(file_path=tmp_file_path1)
                    documents = loader.load()
                    text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)
                    data += text_splitter.split_documents(documents)


            if file_extension == ".csv":
                
                with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
                    tmp_file.write(file.getvalue())
                    tmp_file_path = tmp_file.name

                    loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
                                'delimiter': ','})
                    documents = loader.load()
                    
                    text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)
        
                    data += text_splitter.split_documents(documents)
                    st.sidebar.header(f"Data-{file.name}")
                    data1 = pd.read_csv(tmp_file_path)
                    st.sidebar.dataframe(data1)
            
            if file_extension == ".docx":

                with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
                    tmp_file.write(file.getvalue())
                    tmp_file_path = tmp_file.name
                    loader = UnstructuredWordDocumentLoader(file_path=tmp_file_path)
                    documents = loader.load()
                    text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)

                    data += text_splitter.split_documents(documents)
                

        # Download embeddings from GooglePalm
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
        #embeddings = GooglePalmEmbeddings()
        #embeddings = OpenAIEmbeddings()

        # Create a FAISS index from texts and embeddings

        vectorstore = FAISS.from_documents(data, embeddings)
        #vectorstore.save_local("./faiss")
        return vectorstore



with st.sidebar:
    uploaded_file =  st.file_uploader("Upload your files",
    help="Multiple Files are Supported",
    type=['pdf', 'docx', 'csv'], accept_multiple_files= True)


if not uploaded_file:
    st.warning("Upload your file(s) to start chatting!")
    


if 'history' not in st.session_state:  
        st.session_state['history'] = []


if "messages" not in st.session_state or st.sidebar.button("Clear conversation history"):
    st.session_state["messages"]= []
    
    
st.sidebar.subheader('Created by Engr. Muhammad Asadullah')

# Adding links to social accounts
st.sidebar.markdown("[LinkedIn](https://www.linkedin.com/in/asad18/)")
st.sidebar.markdown("[GitHub](https://github.com/TechAsad)")
st.sidebar.markdown("[Fiverr](https://www.fiverr.com/promptengr?source=gig_page&gigs=slug%3Acreate-streamlit-and-gradio-web-apps-for-ai-and-data-analysis%2Cpckg_id%3A1&is_choice=true)")
st.sidebar.markdown("[Website](https://tenlancer.com/)")
########--Save PDF--########
    

def text_to_audio(response, lang):
    audio_buffer = BytesIO()
    audio_file = gTTS(text=response, lang=lang, slow=False)
    audio_file.write_to_fp(audio_buffer)
    audio_buffer.seek(0)
    return audio_buffer


def main():
   # try:
        if (use_openai and openai_api_key) or use_google:
            if uploaded_file:
                db = processing_csv_pdf_docx(uploaded_file)
                for file in uploaded_file:
                    st.success(f'Your File: {file.name} is Embedded', icon="✅")
            
            for msg in st.session_state.messages:
                if msg["role"] == "user":
                    st.chat_message("user", avatar="user.png").write(msg["content"])
                
                if msg["role"] == "Assistant":
                    st.chat_message("Assistant", avatar="logo.png").write(msg["content"])
                    
                    st.audio(msg["audio_content"], format='audio/wav') 
                    #st.audio(audio_msg, format='audio/mp3').audio(audio_msg)
    
            
            if prompt := st.chat_input(placeholder="Type your question!"):
                st.session_state.messages.append({"role": "user", "content": prompt})
                st.chat_message("user", avatar="user.png").write(prompt)
                memory = ConversationBufferMemory(memory_key="chat_history", input_key="question", human_prefix= "User", ai_prefix= "Assistant")
                user_message = {"role": "user", "content": prompt}
                
                
                for i in range(0, len(st.session_state.messages), 2):
                    if i + 1 < len(st.session_state.messages):
                        user_prompt = st.session_state.messages[i]
                        ai_res = st.session_state.messages[i + 1]
                        
                        
                        current_content = user_prompt["content"]
                        
                        
                        next_content = ai_res["content"]
                        
                        # Concatenate role and content for context and output
                        user = f" {current_content}"
                        ai = f" {next_content}"
                        
                        memory.save_context({"question": user}, {"output": ai})

                # Get user input -> Generate the answer
                greetings = ['Hey', 'Hello', 'hi', 'hello', 'hey', 'helloo', 'hellooo', 'g morning', 'gmorning', 'good morning', 'morning',
                            'good day', 'good afternoon', 'good evening', 'greetings', 'greeting', 'good to see you',
                            'its good seeing you', 'how are you', "how're you", 'how are you doing', "how ya doin'", 'how ya doin',
                            'how is everything', 'how is everything going', "how's everything going", 'how is you', "how's you",
                            'how are things', "how're things", 'how is it going', "how's it going", "how's it goin'", "how's it goin",
                            'how is life been treating you', "how's life been treating you", 'how have you been', "how've you been",
                            'what is up', "what's up", 'what is cracking', "what's cracking", 'what is good', "what's good",
                            'what is happening', "what's happening", 'what is new', "what's new", 'what is neww', "g’day", 'howdy']
                compliment = ['thank you', 'thanks', 'thanks a lot', 'thanks a bunch', 'great', 'ok', 'ok thanks', 'okay', 'great', 'awesome', 'nice']
                            
                prompt_template =dedent(r"""
                You are a helpful assistant.
                talk humbly. Answer the question from the provided context. Do not answer from your own training data.
                Use the following pieces of context to answer the question at the end.
                If you don't know the answer, just say that you don't know. Do not makeup any answer.
                Do not answer hypothetically. Do not answer in more than 100 words.
                Please Do Not say: "Based on the provided context"
                
                
                this is the context:
                ---------
                {context}
                ---------

                Current Conversation: 
                ---------
                {chat_history}
                ---------

                Question: 
                {question}

                Helpful Answer: 
                """)
                
                

                PROMPT = PromptTemplate(
                    template=prompt_template, input_variables=["context", "question", "chat_history"]
                )

                # Run the question-answering chain
                
                
                
                    # Load question-answering chain
                chain = load_qa_chain(llm=llm, verbose= True, prompt = PROMPT,memory=memory, chain_type="stuff")
                    
                #chain = load_qa_chain(ChatOpenAI(temperature=0.9, model="gpt-3.5-turbo-0613", streaming=True) , verbose= True, prompt = PROMPT, memory=memory,chain_type="stuff")

                with st.chat_message("Assistant",  avatar="logo.png"):
                    st_cb = StreamlitCallbackHandler(st.container())
                    if prompt.lower() in greetings:
                        response = 'Hi, how are you? I am here to help you get information from your file. How can I assist you?'
                        
                        
                        lang = "en"
                            
                            
                            
                        audio_buffer = text_to_audio(response, lang)
                        #st.audio(audio_buffer, format='audio/mp3')
                        st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
                        
                    elif prompt.lower() in compliment:
                        response = 'My pleasure! If you have any more questions, feel free to ask.'
                        
                        
                        lang = "en"
                            
                            
                            
                        audio_buffer = text_to_audio(response, lang)
                        #st.audio(audio_buffer, format='audio/mp3')
                        st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
                        
                    elif uploaded_file:
                        with st.spinner('Bot is typing ...'):
                            docs = db.similarity_search(prompt, k=5, fetch_k=10)
                            response = chain.run(input_documents=docs, question=prompt)
                            
                            
                            lang = detect(response)
                            
                            
                            
                            audio_buffer = text_to_audio(response, lang)
                           # st.audio(audio_buffer, format='audio/mp3')
                            #st.session_state.audio.append({"role": "Assistant", "audio": audio_buffer})
                            st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
                           
                            assistant_message = {"role": "assistant", "content": response}
                    else:
                        with st.spinner('Bot is typing ...'):
                            prompt_chat = ChatPromptTemplate.from_template("you are a helpful assistant, Answer the question with your knowledge.\n\n current conversation: {chat_history} \n\n Question: {question} \n\n Answer:")
                            chain = prompt_chat | llm
                            response = chain.invoke({"chat_history": memory, "question": prompt}).content
                            
                            
                            lang = detect(response)
                            
                            
                            
                            audio_buffer = text_to_audio(response, lang)
                            #st.audio(audio_buffer, format='audio/mp3')
                            #st.session_state.audio.append({"role": "Assistant", "audio": audio_buffer})
                            st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
                            
                            assistant_message = {"role": "assistant", "content": response}
                                            
                    st.write(response)             
                st.audio(audio_buffer, format='audio/wav')                        
                    
                            
    #except Exception as e:
        
     #   "Sorry, there was a problem. A corrupted file or;"
      #  if use_google:
       #     "Google PaLM AI only take English Data and Questions. Or the AI could not find the answer in your provided document."
        #elif use_openai:
         #   "Please check your OpenAI API key"
         


hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 


if __name__ == '__main__':
    main()