Spaces:
Sleeping
Sleeping
File size: 16,259 Bytes
cae3b1e 550e99c cae3b1e e4ec9a3 95eb934 2b48034 2680fde 2b48034 cae3b1e 2680fde cae3b1e 2b48034 cae3b1e 4b1a892 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 4b1a892 cae3b1e 2b48034 cae3b1e 4b1a892 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 4b1a892 cae3b1e 2b48034 cae3b1e 4b1a892 cae3b1e 4b1a892 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e 2b48034 cae3b1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import streamlit as st
from PyPDF2 import PdfReader
import langchain
from textwrap import dedent
import pandas as pd
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_openai import ChatOpenAI
from langchain_community.chat_models import ChatGooglePalm
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import tempfile
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.document_loaders.pdf import PyPDFLoader
from langchain.document_loaders.word_document import UnstructuredWordDocumentLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.agents import load_tools
import os
from io import BytesIO
from langdetect import detect
from gtts import gTTS
from langchain.prompts import (
ChatPromptTemplate
)
st.set_page_config(page_title='Personal Chatbot', page_icon='books')
st.markdown(
"""
<style>
[data-testid=stImage]{
text-align: center;
display: block;
margin-left: 10%;
margin-right:10%;
width: 100%;
}
img {
border-radius: 50%;
align: center;
}
</style>
""", unsafe_allow_html=True
)
st.image("tenlancer.png", width=80)
st.markdown("<h3 style='text-align: center; color: white;'> Knowledge Query Assistant </h3>", unsafe_allow_html=True)
st.markdown(
"""
<style>
[data-testid="stChatMessageContent"] p{
font-size: 1.2rem;
color: #404040
}
</style>
""", unsafe_allow_html=True
)
GOOGLE_API_KEY = "AIzaSyD29fEos3V6S2L-AGSQgNu03GqZEIgJads"
#api_key2 = st.secrets["OPENAI_API_KEY"]
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
st.sidebar.header("options")
st.sidebar.subheader("Please Choose the AI Engine")
use_google = st.sidebar.checkbox("Use Free AI", value =True)
use_openai = st.sidebar.checkbox("Use OpenAI with your API Key")
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type="password")
def choose_llm():
try:
if use_google and use_openai:
st.sidebar.warning("Please choose only one AI engine.")
st.warning("Please choose only one AI engine.")
elif use_google:
llm = ChatGooglePalm(temperature=0.1)
elif use_openai:
if not openai_api_key:
st.sidebar.warning("Please provide your OpenAI API Key.")
st.warning("Please provide your OpenAI API Key.")
llm = ChatOpenAI(api_key=openai_api_key, temperature=0.1)
return llm
except Exception as e:
" "
llm = choose_llm()
if llm:
st.sidebar.success("AI Engine selected")
else:
st.sidebar.warning("Please choose an AI engine.")
@st.cache_resource(show_spinner=False)
def processing_csv_pdf_docx(uploaded_file):
with st.spinner(text="Embedding Your Files"):
# Read text from the uploaded PDF file
data = []
for file in uploaded_file:
split_tup = os.path.splitext(file.name)
file_extension = split_tup[1]
if file_extension == ".pdf":
with tempfile.NamedTemporaryFile(delete=False) as tmp_file1:
tmp_file1.write(file.getvalue())
tmp_file_path1 = tmp_file1.name
loader = PyPDFLoader(file_path=tmp_file_path1)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)
data += text_splitter.split_documents(documents)
if file_extension == ".csv":
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file_path = tmp_file.name
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
'delimiter': ','})
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)
data += text_splitter.split_documents(documents)
st.sidebar.header(f"Data-{file.name}")
data1 = pd.read_csv(tmp_file_path)
st.sidebar.dataframe(data1)
if file_extension == ".docx":
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file_path = tmp_file.name
loader = UnstructuredWordDocumentLoader(file_path=tmp_file_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)
data += text_splitter.split_documents(documents)
# Download embeddings from GooglePalm
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
#embeddings = GooglePalmEmbeddings()
#embeddings = OpenAIEmbeddings()
# Create a FAISS index from texts and embeddings
vectorstore = FAISS.from_documents(data, embeddings)
#vectorstore.save_local("./faiss")
return vectorstore
with st.sidebar:
uploaded_file = st.file_uploader("Upload your files",
help="Multiple Files are Supported",
type=['pdf', 'docx', 'csv'], accept_multiple_files= True)
if not uploaded_file:
st.warning("Upload your file(s) to start chatting!")
if 'history' not in st.session_state:
st.session_state['history'] = []
if "messages" not in st.session_state or st.sidebar.button("Clear conversation history"):
st.session_state["messages"]= []
st.sidebar.subheader('Created by Engr. Muhammad Asadullah')
# Adding links to social accounts
st.sidebar.markdown("[LinkedIn](https://www.linkedin.com/in/asad18/)")
st.sidebar.markdown("[GitHub](https://github.com/TechAsad)")
st.sidebar.markdown("[Fiverr](https://www.fiverr.com/promptengr?source=gig_page&gigs=slug%3Acreate-streamlit-and-gradio-web-apps-for-ai-and-data-analysis%2Cpckg_id%3A1&is_choice=true)")
st.sidebar.markdown("[Website](https://tenlancer.com/)")
########--Save PDF--########
def text_to_audio(response, lang):
audio_buffer = BytesIO()
audio_file = gTTS(text=response, lang=lang, slow=False)
audio_file.write_to_fp(audio_buffer)
audio_buffer.seek(0)
return audio_buffer
def main():
# try:
if (use_openai and openai_api_key) or use_google:
if uploaded_file:
db = processing_csv_pdf_docx(uploaded_file)
for file in uploaded_file:
st.success(f'Your File: {file.name} is Embedded', icon="✅")
for msg in st.session_state.messages:
if msg["role"] == "user":
st.chat_message("user", avatar="user.png").write(msg["content"])
if msg["role"] == "Assistant":
st.chat_message("Assistant", avatar="logo.png").write(msg["content"])
st.audio(msg["audio_content"], format='audio/wav')
#st.audio(audio_msg, format='audio/mp3').audio(audio_msg)
if prompt := st.chat_input(placeholder="Type your question!"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user", avatar="user.png").write(prompt)
memory = ConversationBufferMemory(memory_key="chat_history", input_key="question", human_prefix= "User", ai_prefix= "Assistant")
user_message = {"role": "user", "content": prompt}
for i in range(0, len(st.session_state.messages), 2):
if i + 1 < len(st.session_state.messages):
user_prompt = st.session_state.messages[i]
ai_res = st.session_state.messages[i + 1]
current_content = user_prompt["content"]
next_content = ai_res["content"]
# Concatenate role and content for context and output
user = f" {current_content}"
ai = f" {next_content}"
memory.save_context({"question": user}, {"output": ai})
# Get user input -> Generate the answer
greetings = ['Hey', 'Hello', 'hi', 'hello', 'hey', 'helloo', 'hellooo', 'g morning', 'gmorning', 'good morning', 'morning',
'good day', 'good afternoon', 'good evening', 'greetings', 'greeting', 'good to see you',
'its good seeing you', 'how are you', "how're you", 'how are you doing', "how ya doin'", 'how ya doin',
'how is everything', 'how is everything going', "how's everything going", 'how is you', "how's you",
'how are things', "how're things", 'how is it going', "how's it going", "how's it goin'", "how's it goin",
'how is life been treating you', "how's life been treating you", 'how have you been', "how've you been",
'what is up', "what's up", 'what is cracking', "what's cracking", 'what is good', "what's good",
'what is happening', "what's happening", 'what is new', "what's new", 'what is neww', "g’day", 'howdy']
compliment = ['thank you', 'thanks', 'thanks a lot', 'thanks a bunch', 'great', 'ok', 'ok thanks', 'okay', 'great', 'awesome', 'nice']
prompt_template =dedent(r"""
You are a helpful assistant.
talk humbly. Answer the question from the provided context. Do not answer from your own training data.
Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know. Do not makeup any answer.
Do not answer hypothetically. Do not answer in more than 100 words.
Please Do Not say: "Based on the provided context"
this is the context:
---------
{context}
---------
Current Conversation:
---------
{chat_history}
---------
Question:
{question}
Helpful Answer:
""")
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question", "chat_history"]
)
# Run the question-answering chain
# Load question-answering chain
chain = load_qa_chain(llm=llm, verbose= True, prompt = PROMPT,memory=memory, chain_type="stuff")
#chain = load_qa_chain(ChatOpenAI(temperature=0.9, model="gpt-3.5-turbo-0613", streaming=True) , verbose= True, prompt = PROMPT, memory=memory,chain_type="stuff")
with st.chat_message("Assistant", avatar="logo.png"):
st_cb = StreamlitCallbackHandler(st.container())
if prompt.lower() in greetings:
response = 'Hi, how are you? I am here to help you get information from your file. How can I assist you?'
lang = "en"
audio_buffer = text_to_audio(response, lang)
#st.audio(audio_buffer, format='audio/mp3')
st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
elif prompt.lower() in compliment:
response = 'My pleasure! If you have any more questions, feel free to ask.'
lang = "en"
audio_buffer = text_to_audio(response, lang)
#st.audio(audio_buffer, format='audio/mp3')
st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
elif uploaded_file:
with st.spinner('Bot is typing ...'):
docs = db.similarity_search(prompt, k=5, fetch_k=10)
response = chain.run(input_documents=docs, question=prompt)
lang = detect(response)
audio_buffer = text_to_audio(response, lang)
# st.audio(audio_buffer, format='audio/mp3')
#st.session_state.audio.append({"role": "Assistant", "audio": audio_buffer})
st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
assistant_message = {"role": "assistant", "content": response}
else:
with st.spinner('Bot is typing ...'):
prompt_chat = ChatPromptTemplate.from_template("you are a helpful assistant, Answer the question with your knowledge.\n\n current conversation: {chat_history} \n\n Question: {question} \n\n Answer:")
chain = prompt_chat | llm
response = chain.invoke({"chat_history": memory, "question": prompt}).content
lang = detect(response)
audio_buffer = text_to_audio(response, lang)
#st.audio(audio_buffer, format='audio/mp3')
#st.session_state.audio.append({"role": "Assistant", "audio": audio_buffer})
st.session_state.messages.append({"role": "Assistant", "content": response, "audio_content": audio_buffer})
assistant_message = {"role": "assistant", "content": response}
st.write(response)
st.audio(audio_buffer, format='audio/wav')
#except Exception as e:
# "Sorry, there was a problem. A corrupted file or;"
# if use_google:
# "Google PaLM AI only take English Data and Questions. Or the AI could not find the answer in your provided document."
#elif use_openai:
# "Please check your OpenAI API key"
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
if __name__ == '__main__':
main()
|