techasad's picture
Upload app.py
aec954b
raw
history blame
2.68 kB
from transformers import pipeline
from langchain import PromptTemplate, LLMChain
from langchain.llms import GooglePalm
import requests
import os
import streamlit as st
os.environ["GOOGLE_API_KEY"] = "AIzaSyD29fEos3V6S2L-AGSQgNu03GqZEIgJads"
os.environ ["HUGGINGFACEHUB_API_TOKEN"] = "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"
llm = GooglePalm(temperature = 0.7)
#image to text
def image2text(url):
image_to_text = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-large")
text = image_to_text(
url)[0]['generated_text']
print(text)
return(text)
#story teller
def generate_story(scenario):
template = """"
You are a story teller;
you can generate a creative fun story based on a sample narrative, the story should not be more than 100 words;
CONTEXT: {scenario}
STORY:
"""
prompt = PromptTemplate(template = template,
input_variables = ['scenario']
)
story_llm = LLMChain(llm=llm, prompt = prompt, verbose = True)
story = story_llm.predict(scenario = scenario)
print(story)
return(story)
#text to speech
def text2speech(message):
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": "Bearer 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"}
payloads = {
"inputs":message
}
response = requests.post(API_URL, headers = headers, json= payloads)
with open("audio.flac", "wb") as file:
file.write(response.content)
def main():
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, 'wb') as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width= True)
scenario = image2text(uploaded_file.name)
st.subheader("Image Details:")
st.write(scenario)
story = generate_story(scenario)
st.subheader("Story:")
st.write(story)
text2speech(story)
st.subheader("Generated Audio:")
st.audio("audio.flac", format="audio/flac")
# Add a download link for the audio
st.subheader("Download Audio:")
with open("audio.flac", "rb") as audio_file:
st.download_button(label="Download Audio", data=audio_file, file_name="generated_audio.flac", mime="audio/flac")
if __name__ == "__main__":
main()