Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
from langchain import PromptTemplate, LLMChain | |
from langchain_community.chat_models import ChatGooglePalm | |
import requests | |
import os | |
import streamlit as st | |
os.environ["GOOGLE_API_KEY"] = "AIzaSyD29fEos3V6S2L-AGSQgNu03GqZEIgJads" | |
os.environ ["HUGGINGFACEHUB_API_TOKEN"] = "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" | |
llm = ChatGooglePalm(temperature = 0.5) | |
#image to text | |
def image2text(url): | |
image_to_text = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-large") | |
text = image_to_text( | |
url)[0]['generated_text'] | |
print(text) | |
return(text) | |
#story teller | |
def generate_story(scenario): | |
template = """" | |
You are a story teller; | |
you can generate a creative fun story based on a sample narrative, the story should not be more than 100 words; | |
CONTEXT: {scenario} | |
STORY: | |
""" | |
prompt = PromptTemplate(template = template, | |
input_variables = ['scenario'] | |
) | |
story_llm = LLMChain(llm=llm, prompt = prompt, verbose = True) | |
story = story_llm.predict(scenario = scenario) | |
print(story) | |
return(story) | |
#text to speech | |
def text2speech(message): | |
API_URL = "https://api-inference.huggingface.co/models/espnet/fastspeech2_conformer" | |
headers = {"Authorization": "Bearer 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"} | |
payloads = { | |
"inputs":message | |
} | |
response = requests.post(API_URL, headers = headers, json= payloads) | |
with open("audio.flac", "wb") as file: | |
file.write(response.content) | |
def main(): | |
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") | |
st.header("Turn Your Image to Audio Story") | |
uploaded_file = st.file_uploader("Select an Image...") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, 'wb') as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", | |
use_column_width= True) | |
scenario = image2text(uploaded_file.name) | |
st.subheader("Image Details:") | |
st.write(scenario) | |
story = generate_story(scenario) | |
st.subheader("Story:") | |
st.write(story) | |
text2speech(story) | |
st.subheader("Generated Audio:") | |
st.audio("audio.flac", format="audio/flac") | |
# Add a download link for the audio | |
st.subheader("Download Audio:") | |
with open("audio.flac", "rb") as audio_file: | |
st.download_button(label="Download Audio", data=audio_file, file_name="generated_audio.flac", mime="audio/flac") | |
if __name__ == "__main__": | |
main() | |