Spaces:
Runtime error
Runtime error
File size: 8,557 Bytes
18c16bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import base64
import json
from datetime import datetime
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import ast
import os
from datetime import datetime
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
import gradio as gr
import time
# Define constants
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"
# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)
# List all files in the repository
files = list_repo_files(repo_id=model_repo)
# Download each file to the destination folder
for file in files:
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
print(f"Downloaded {file} to {file_path}")
model = Qwen2VLForConditionalGeneration.from_pretrained(
"./showui-2b",
# "showlab/ShowUI-2B",
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
model_moon = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", revision="2025-01-09", trust_remote_code=True, device_map={"": "cuda"})
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill="red")
return image
def array_to_image_path(image_array):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
def infer_moon(img, query):
start = time.time()
image = Image.fromarray(np.uint8(img))
points = model_moon.point(image, query)["points"]
converted_data = [round(points[0]["x"], 2), round(points[0]["y"], 2)]
end = time.time()
total_time = end - start
return converted_data, f"{round(total_time, 2)} seconds"
def infer_showui(image_path, query):
start = time.time()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
inputs = inputs.to("cuda")
# Generate output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# Parse the output into coordinates
click_xy = ast.literal_eval(output_text)
end = time.time()
total_time = end - start
return click_xy, f"{round(total_time, 2)} seconds"
def run(image, query):
"""Main function for inference."""
image_path = array_to_image_path(image)
moon, time_taken_moon = infer_moon(image, query)
showui, time_taken_showui = infer_showui(image_path, query)
# Draw the point on the image
result_image = draw_point(image_path, showui, radius=10)
result_moon_image = draw_point(image_path, moon, radius=10)
return result_image, time_taken_showui, result_moon_image, time_taken_moon
def build_demo():
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
# State to store the consistent image path
state_image_path = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Input components
imagebox = gr.Image(type="numpy", label="Input Screenshot")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
# Placeholder examples
gr.Examples(
examples=[
["./examples/app_store.png", "Download Kindle."],
["./examples/ios_setting.png", "Turn off Do not disturb."],
["./examples/image_13.png", "Tap on vehicle search."],
["./examples/map.png", "Boston."],
["./examples/wallet.png", "Scan a QR code."],
["./examples/word.png", "More shapes."],
["./examples/web_shopping.png", "Proceed to checkout."],
["./examples/web_forum.png", "Post my comment."],
["./examples/safari_google.png", "Click on search bar."],
],
inputs=[imagebox, textbox],
examples_per_page=3,
)
with gr.Column(scale=8):
# Output components
output_img1 = gr.Image(type="pil", label="Show UI Output")
output_time1 = gr.Text(label="showui inference time")
output_img2 = gr.Image(type="pil", label="Moon dream Output")
output_time2 = gr.Text(label="moondream inference time")
# Add a note below the images to explain the red point
gr.HTML(
"""
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output images represents the predicted clickable coordinates.</p>
"""
)
# Buttons for voting, flagging, regenerating, and clearing
with gr.Row(elem_id="action-buttons", equal_height=True):
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary")
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button
# Define button actions
def on_submit(image, query):
"""Handle the submit button click."""
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Generate consistent image path and store it in the state
image_path = array_to_image_path(image)
return run(image, query) + (image_path,)
submit_btn.click(
on_submit,
[imagebox, textbox],
[output_img1, output_time1, output_img2, output_time2, state_image_path],
)
clear_btn.click(
lambda: (None, None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_img1, output_img2, state_image_path], # Clear all outputs
queue=False,
)
regenerate_btn.click(
lambda image, query, state_image_path: run(image, query),
[imagebox, textbox, state_image_path],
[output_img1, output_time1, output_img2, output_time2],
)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, share=True)
|