Spaces:
Sleeping
Sleeping
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
import torch | |
from transformers import AutoModelForCausalLM | |
from janus.models import MultiModalityCausalLM, VLChatProcessor | |
import numpy as np | |
import os | |
import PIL.Image | |
# specify the path to the model | |
model_path = "deepseek-ai/Janus-1.3B" | |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = vl_chat_processor.tokenizer | |
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( | |
model_path, trust_remote_code=True | |
) | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() | |
conversation = [ | |
{ | |
"role": "User", | |
"content": "A close-up high-contrast photo of Sydney Opera House sitting next to Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars, and radiating swirls of blue.", | |
}, | |
{"role": "Assistant", "content": ""}, | |
] | |
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
conversations=conversation, | |
sft_format=vl_chat_processor.sft_format, | |
system_prompt="", | |
) | |
prompt = sft_format + vl_chat_processor.image_start_tag | |
def generate( | |
mmgpt: MultiModalityCausalLM, | |
vl_chat_processor: VLChatProcessor, | |
prompt: str, | |
temperature: float = 1, | |
parallel_size: int = 16, | |
cfg_weight: float = 5, | |
image_token_num_per_image: int = 576, | |
img_size: int = 384, | |
patch_size: int = 16, | |
): | |
input_ids = vl_chat_processor.tokenizer.encode(prompt) | |
input_ids = torch.LongTensor(input_ids) | |
tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() | |
for i in range(parallel_size*2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = vl_chat_processor.pad_id | |
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() | |
for i in range(image_token_num_per_image): | |
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) | |
hidden_states = outputs.last_hidden_state | |
logits = mmgpt.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
img_embeds = mmgpt.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) | |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) | |
visual_img[:, :, :] = dec | |
os.makedirs('generated_samples', exist_ok=True) | |
for i in range(parallel_size): | |
save_path = os.path.join('generated_samples', "img_{}.jpg".format(i)) | |
PIL.Image.fromarray(visual_img[i]).save(save_path) | |
generate( | |
vl_gpt, | |
vl_chat_processor, | |
prompt, | |
) |