Spaces:
Sleeping
Sleeping
File size: 20,293 Bytes
a97d040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import csv
import json
import os
import pandas as pd
from langchain_huggingface import HuggingFaceEmbeddings
from asg_retriever import legal_pdf
from asg_loader import DocumentLoading
from asg_retriever import Retriever, query_embeddings_new_new
from asg_generator import generate_sentence_patterns, generate
from category_and_tsne import clustering
from langchain_text_splitters import RecursiveCharacterTextSplitter
import time
import torch
import re
import transformers
from dotenv import load_dotenv
from asg_clustername import generate_cluster_name_new
from asg_outline import OutlineGenerator, generateSurvey_qwen_new
import os
from markdown_pdf import MarkdownPdf, Section # Assuming you are using markdown_pdf
from typing import Any
def clean_str(input_str):
input_str = str(input_str).strip().lower()
if input_str == "none" or input_str == "nan" or len(input_str) == 0:
return ""
input_str = input_str.replace('\\n',' ').replace('\n',' ').replace('\r',' ').replace('——',' ').replace('——',' ').replace('__',' ').replace('__',' ').replace('........','.').replace('....','.').replace('....','.').replace('..','.').replace('..','.').replace('..','.').replace('. . . . . . . . ','. ').replace('. . . . ','. ').replace('. . . . ','. ').replace('. . ','. ').replace('. . ','. ')
input_str = re.sub(r'\\u[0-9a-z]{4}', ' ', input_str).replace(' ',' ').replace(' ',' ')
return input_str
def remove_invalid_citations(text, valid_collection_names):
"""
只保留 [xxx\] 中的 xxx 属于 valid_collection_names 的引用,
其余的引用标记一律删除。
"""
pattern = r"\[(.*?)\\\]" # 匹配形如 [xxx\] 的内容
all_matches = re.findall(pattern, text)
new_text = text
for match in all_matches:
cleaned_match = match.rstrip('\\') # 去除末尾的 \
if cleaned_match not in valid_collection_names:
new_text = new_text.replace(f"[{match}\\]", "")
return new_text
def normalize_citations_with_mapping(paper_text):
# 使用正则表达式匹配所有引用标记(形如 [citation1])
citations = re.findall(r'\[.*?\]', paper_text)
# 去重并保持顺序
unique_citations = list(dict.fromkeys(citations))
# 生成引用映射表,把原始引用标记映射为数字引用
citation_mapping = {citation: f'[{i + 1}]' for i, citation in enumerate(unique_citations)}
# 在文本中替换老引用为新引用
normalized_text = paper_text
for old_citation, new_citation in citation_mapping.items():
normalized_text = normalized_text.replace(old_citation, new_citation)
# 生成从数字到原始引用标记的反向映射
# 用 rstrip('\\') 去掉末尾的反斜杠
reverse_mapping = {
i + 1: unique_citations[i].strip('[]').rstrip('\\')
for i in range(len(unique_citations))
}
return normalized_text, reverse_mapping
def generate_references_section(citation_mapping, collection_pdf_mapping):
references = ["# References"] # 生成引用部分
for num in sorted(citation_mapping.keys()):
collection_name = citation_mapping[num]
pdf_name = collection_pdf_mapping.get(collection_name, "Unknown PDF")
if pdf_name.endswith(".pdf"):
pdf_name = pdf_name[:-4]
# 在每一行末尾添加两个空格以确保换行
references.append(f"[{num}] {pdf_name} ")
return "\n".join(references)
def fix_citation_punctuation_md(text):
"""
把类似于 'some text. \[1]' 或 'some text. \[2]' 调整为 'some text \[1].'
仅针对已经变成 \[1], \[2] 之类数字引用的 Markdown 情况有效。
如果还没有变成 \[数字],则需先经过 normalize_citations_with_mapping。
"""
# 正则表达式匹配点号后带有空格或无空格,紧接 \[数字] 的情况
pattern = r'\.\s*(\\\[\d+\])'
replacement = r' \1.'
fixed_text = re.sub(pattern, replacement, text)
return fixed_text
def finalize_survey_paper(paper_text,
Global_collection_names,
Global_file_names):
# 1) 删除所有不想要的旧引用(包括 [数字]、[Sewon, 2021] 等)
paper_text = remove_invalid_citations(paper_text, Global_collection_names)
# 2) 规范化引用 => [1][2]...
normalized_text, citation_mapping = normalize_citations_with_mapping(paper_text)
# 3) 修复标点,比如 .[1] => [1].
normalized_text = fix_citation_punctuation_md(normalized_text)
# 4) 构造 {collection_name: pdf_file_name} 字典
collection_pdf_mapping = dict(zip(Global_collection_names, Global_file_names))
# 5) 生成 References
references_section = generate_references_section(citation_mapping, collection_pdf_mapping)
# 6) 合并正文和 References
final_paper = normalized_text.strip() + "\n\n" + references_section
return final_paper
class ASG_system:
def __init__(self, root_path: str, survey_id:str, pdf_path: str, survey_title: str, cluster_standard: str) -> None:
load_dotenv()
self.pdf_path = pdf_path
self.txt_path = root_path + "/txt"
self.tsv_path = root_path + "/tsv"
self.md_path = root_path + "/md"
self.info_path = root_path + "/info"
self.result_path = root_path + "/result"
self.survey_id = survey_id
self.survey_title = survey_title
self.cluster_standard = cluster_standard
self.collection_names = []
self.file_names = []
self.citation_data = []
self.description_list = []
self.ref_list = []
self.cluster_names = []
self.collection_names_clustered = []
self.df_selected = ''
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
self.embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
self.pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
token = os.getenv('HF_API_KEY'),
device_map="auto",
)
self.pipeline.model.load_adapter(peft_model_id = "technicolor/llama3.1_8b_outline_generation", adapter_name="outline")
self.pipeline.model.load_adapter(peft_model_id ="technicolor/llama3.1_8b_abstract_generation", adapter_name="abstract")
self.pipeline.model.load_adapter(peft_model_id ="technicolor/llama3.1_8b_conclusion_generation", adapter_name="conclusion")
os.makedirs(self.txt_path, exist_ok=True)
os.makedirs(f'{self.txt_path}/{self.survey_id}', exist_ok=True)
os.makedirs(self.tsv_path, exist_ok=True)
os.makedirs(self.md_path, exist_ok=True)
os.makedirs(f'{self.md_path}/{self.survey_id}', exist_ok=True)
os.makedirs(self.info_path, exist_ok=True)
os.makedirs(f'{self.info_path}/{self.survey_id}', exist_ok=True)
os.makedirs(self.result_path, exist_ok=True)
os.makedirs(f'{self.result_path}/{self.survey_id}', exist_ok=True)
def parsing_pdfs(self, mode="intro") -> None:
pdf_files = os.listdir(self.pdf_path)
loader = DocumentLoading()
for pdf_file in pdf_files:
pdf_file = os.path.join(self.pdf_path, pdf_file)
split_start_time = time.time()
base_name = os.path.splitext(os.path.basename(pdf_file))[0]
target_dir = os.path.join(self.md_path, self.survey_id, base_name, "auto")
md_dir = os.path.join(self.md_path, self.survey_id)
loader.convert_pdf_to_md(pdf_file, md_dir)
md_file_path = os.path.join(target_dir, f"{base_name}.md")
print(md_file_path)
print("*"*24)
if not os.path.exists(md_file_path):
raise FileNotFoundError(f"Markdown file {md_file_path} does not exist. Conversion might have failed.")
if mode == "intro":
doc = loader.process_md_file(md_file_path, self.survey_id, self.txt_path)
elif mode == "full":
doc = loader.process_md_file_full(md_file_path, self.survey_id,self.txt_path)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=30,
length_function=len,
is_separator_regex=False,
)
splitters = text_splitter.create_documents([doc])
documents_list = [document.page_content for document in splitters]
for i in range(len(documents_list)):
documents_list[i] = documents_list[i].replace('\n', ' ')
print(f"Splitting took {time.time() - split_start_time} seconds.")
embed_start_time = time.time()
doc_results = self.embedder.embed_documents(documents_list)
if isinstance(doc_results, torch.Tensor):
embeddings_list = doc_results.tolist()
else:
embeddings_list = doc_results
print(f"Embedding took {time.time() - embed_start_time} seconds.")
# Prepare metadata
metadata_list = [{"doc_name": os.path.basename(pdf_file)} for i in range(len(documents_list))]
title = os.path.splitext(os.path.basename(pdf_file))[0]
title_new = title.strip()
invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*','_']
for char in invalid_chars:
title_new = title_new.replace(char, ' ')
print("============================")
print(title_new)
# New logic to create collection_name
# filename = os.path.basename(file_path)
collection_name = legal_pdf(title_new)
retriever = Retriever()
retriever.list_collections_chroma()
retriever.create_collection_chroma(collection_name)
retriever.add_documents_chroma(
collection_name=collection_name,
embeddings_list=embeddings_list,
documents_list=documents_list,
metadata_list=metadata_list
)
self.collection_names.append(collection_name)
self.file_names.append(title_new)
print(self.collection_names)
print(self.file_names)
json_files = os.listdir(os.path.join(self.txt_path, self.survey_id))
ref_paper_num = len(json_files)
print(f'The length of the json files is {ref_paper_num}')
json_data_pd = pd.DataFrame()
for _ in json_files:
file_path = os.path.join(self.txt_path, self.survey_id, _)
with open(file_path, 'r', encoding="utf-8") as file:
data = json.load(file)
# Extract necessary information
title = data.get("title", "")
abstract = data.get("abstract", "")
authors = data.get("authors", "")
introduction = data.get("introduction", "")
new_data = {
"reference paper title": title,
"reference paper citation information (can be collected from Google scholar/DBLP)": authors,
"reference paper abstract (Please copy the text AND paste here)": abstract,
"reference paper introduction (Please copy the text AND paste here)": introduction,
"reference paper doi link (optional)": "",
"reference paper category label (optional)": ""
}
# 将新数据转换为 DataFrame
new_data_df = pd.DataFrame([new_data])
# 使用 pd.concat 而不是 append
json_data_pd = pd.concat([json_data_pd, new_data_df], ignore_index=True)
# Save the DataFrame to a variable for further use
input_pd = json_data_pd
if ref_paper_num>0:
## change col name
input_pd['ref_title'] = [filename for filename in self.file_names]
input_pd["ref_context"] = [""]*ref_paper_num
input_pd["ref_entry"] = input_pd["reference paper citation information (can be collected from Google scholar/DBLP)"]
input_pd["abstract"] = input_pd["reference paper abstract (Please copy the text AND paste here)"].apply(lambda x: clean_str(x) if len(str(x))>0 else 'Invalid abstract')
input_pd["intro"] = input_pd["reference paper introduction (Please copy the text AND paste here)"].apply(lambda x: clean_str(x) if len(str(x))>0 else 'Invalid introduction')
# optional columns
input_pd["label"] = input_pd["reference paper category label (optional)"].apply(lambda x: str(x) if len(str(x))>0 else '')
#input_pd["label"] = input_pd["reference paper category id (optional)"].apply(lambda x: str(x) if len(str(x))>0 else '')
## output tsv
# output_tsv_filename = self.tsv_path + self.survey_id + '.tsv'
output_tsv_filename = os.path.join(self.tsv_path, self.survey_id + '.tsv')
#output_df = input_pd[["ref_title","ref_context","ref_entry","abstract","intro","description"]]
output_df = input_pd[["ref_title","ref_context","ref_entry","abstract","intro", 'label']]
# print(output_df)
#pdb.set_trace()
output_df.to_csv(output_tsv_filename, sep='\t')
def description_generation(self) -> None:
query= self.cluster_standard
query_list = generate_sentence_patterns(query)
for name in self.collection_names:
context, citation_data = query_embeddings_new_new(name, query_list)
self.citation_data.extend(citation_data)
description = generate(context, query, name)
self.description_list.append(description)
citation_path = f'{self.info_path}/{self.survey_id}/citation_data.json'
os.makedirs(os.path.dirname(citation_path), exist_ok=True)
with open(citation_path, 'w', encoding="utf-8") as outfile:
json.dump(self.citation_data, outfile, indent=4, ensure_ascii=False)
file_path = f'{self.tsv_path}/{self.survey_id}.tsv'
with open(file_path, 'r', newline='', encoding='utf-8') as infile:
reader = csv.reader(infile, delimiter='\t')
rows = list(reader)
if rows:
headers = rows[0]
headers.append('retrieval_result')
updated_rows = [headers]
for row, description in zip(rows[1:], self.description_list):
row.append(description)
updated_rows.append(row)
with open(file_path, 'w', newline='', encoding='utf-8') as outfile:
writer = csv.writer(outfile, delimiter='\t')
writer.writerows(updated_rows)
print('Updated file has been saved to', file_path)
else:
print('Input file is empty.')
def agglomerative_clustering(self) -> None:
df = pd.read_csv(f'{self.tsv_path}/{self.survey_id}.tsv', sep='\t', index_col=0, encoding='utf-8')
df_selected = df
df_selected, _ = clustering(df_selected, 3, self.survey_id, self.info_path, self.tsv_path)
self.df_selected = df_selected
df_tmp = df_selected.reset_index()
df_tmp['index'] = df_tmp.index
ref_titles = list(df_tmp.groupby(df_tmp['label'])['ref_title'].apply(list))
# ref_indexs = list(df_tmp.groupby(df_tmp['label'])['index'].apply(list))
category_label_summarized = generate_cluster_name_new(f"{self.tsv_path}/{self.survey_id}.tsv", self.survey_title)
self.cluster_names = category_label_summarized
cluster_info = {category_label_summarized[i]:ref_titles[i] for i in range(len(category_label_summarized))}
for key, value in cluster_info.items():
temp = [legal_pdf(i) for i in value]
cluster_info[key] = temp
self.collection_names_clustered.append(temp)
cluster_info_path = f'{self.info_path}/{self.survey_id}/cluster_info.json'
with open(cluster_info_path, 'w', encoding="utf-8") as outfile:
json.dump(cluster_info, outfile, indent=4, ensure_ascii=False)
def outline_generation(self) -> None:
print(self.df_selected)
print(self.cluster_names)
outline_generator = OutlineGenerator(self.pipeline, self.df_selected, self.cluster_names)
outline_generator.get_cluster_info()
messages, outline = outline_generator.generate_outline_qwen(self.survey_title)
outline_json = {'messages':messages, 'outline': outline}
output_path = f'{self.info_path}/{self.survey_id}/outline.json'
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, 'w', encoding="utf-8") as outfile:
json.dump(outline_json, outfile, indent=4, ensure_ascii=False)
def section_generation(self) -> None:
generateSurvey_qwen_new(self.survey_id, self.survey_title, self.collection_names_clustered, self.pipeline, self.citation_data, './txt','./info')
def citation_generation(self) -> None:
"""
Generate citation Markdown and PDF files from JSON and store them in the specified result path.
"""
json_filepath = os.path.join(self.info_path, self.survey_id, "generated_result.json")
markdown_dir = f'{self.result_path}/{self.survey_id}'
markdown_filename = f'survey_{self.survey_id}.md'
markdown_filepath = os.path.join(markdown_dir, markdown_filename)
pdf_filename = f'survey_{self.survey_id}.pdf'
pdf_filepath = os.path.join(markdown_dir, pdf_filename)
markdown_content = self.get_markdown_content(json_filepath)
if not markdown_content:
raise ValueError("Markdown content is empty. Cannot generate citation files.")
try:
with open(markdown_filepath, 'w', encoding='utf-8', encoding="utf-8") as markdown_file:
markdown_file.write(markdown_content)
print(f"Markdown content saved to: {markdown_filepath}")
except Exception as e:
raise RuntimeError(f"Failed to save Markdown file: {e}")
try:
pdf = MarkdownPdf()
pdf.meta["title"] = "Citation Results"
pdf.add_section(Section(markdown_content, toc=False))
pdf.save(pdf_filepath)
print(f"PDF content saved to: {pdf_filepath}")
except Exception as e:
raise RuntimeError(f"Failed to generate PDF file: {e}")
print(f"Files generated successfully: \nMarkdown: {markdown_filepath}\nPDF: {pdf_filepath}")
def get_markdown_content(self, json_filepath: str) -> str:
"""
Read a JSON file and generate Markdown content based on its data.
:param json_filepath: Path to the JSON file containing survey data.
:return: A string containing the generated Markdown content.
"""
try:
with open(json_filepath, 'r', encoding='utf-8', encoding="utf-8") as json_file:
survey_data = json.load(json_file)
except Exception as e:
raise RuntimeError(f"Failed to read JSON file: {e}")
topic = survey_data.get('survey_title', 'Default Topic')
content = survey_data.get('content', 'No content available.')
survey_title_markdown = f"# A Survey of {topic}\n\n"
survey_content_markdown = content + "\n\n"
markdown_content = survey_title_markdown + survey_content_markdown
markdown_content = finalize_survey_paper(markdown_content, self.collection_names, self.file_names)
return markdown_content
if __name__ == "__main__":
root_path = "."
pdf_path = "./pdfs/test"
survey_title = "Automating Literature Review Generation with LLM"
cluster_standard = "method"
asg_system = ASG_system(root_path, 'test', pdf_path, survey_title, cluster_standard)
asg_system.parsing_pdfs()
asg_system.description_generation()
asg_system.agglomerative_clustering()
asg_system.outline_generation()
asg_system.section_generation()
asg_system.citation_generation()
|