Spaces:
Sleeping
Sleeping
File size: 47,788 Bytes
a97d040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
import transformers
import torch
import os
import json
import re
import ast
from .survey_generator_api import *
from .asg_abstract import AbstractGenerator
from .asg_conclusion import ConclusionGenerator
from .asg_retriever import *
import pandas as df
from .references import generate_references
class OutlineGenerator():
def __init__(self, pipeline, df, cluster_names, mode='desp'):
self.pipeline = pipeline
# self.pipeline.model.load_adapter("technicolor/llama3.1_8b_outline_generation")
self.pipeline.model.set_adapter("outline")
self.df = df
self.cluster = [{'label': i, 'name': cluster_names[i]} for i in range(len(cluster_names))]
self._add_cluster_info()
self.mode = mode
def __init__(self, df, cluster_names, mode='desp'): #Without local llms
self.df = df
self.cluster = [{'label': i, 'name': cluster_names[i]} for i in range(len(cluster_names))]
self._add_cluster_info()
self.mode = mode
def _add_cluster_info(self):
label_to_info = {label: self.df[self.df['label'] == label] for label in range(len(self.cluster))}
for cluster in self.cluster:
cluster['info'] = label_to_info[cluster['label']]
def get_cluster_info(self):
return self.cluster
def generate_claims(self):
result = []
if self.mode == 'desp':
for i in range(len(self.cluster)):
cluster = self.cluster[i]
claims = ''
for j in range(len(cluster['info'])):
claims = cluster['info'].iloc[j]['retrieval_result'] + '\n' + claims
# claims = cluster['info'].iloc[j]['ref_title'] + '\n' + claims
result.append(claims)
else:
for i in range(len(self.cluster)):
cluster = self.cluster[i]
claims = ''
data = cluster['info']
for j in range(len(data)):
entry = data.iloc[j]
title = entry['title']
abstract = entry['abstract']
prompt = f'''
Title:
{title}
Abstract:
{abstract}
Task:
Conclude new findings and null findings from the abstract in one sentence in the atomic format. Do not separate
new findings and null findings. The finding must be relevant to the title. Do not include any other information.
Definition:
A scientific claim is an atomic verifiable statement expressing a finding about one aspect of a scientific entity or
process, which can be verified from a single source.'''
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
outputs = self.pipeline(
messages,
max_new_tokens=256,
)
claim = outputs[0]["generated_text"][-1]['content']
# print(claim)
# print('+++++++++++++++++++++++++++++++++')
claims = claims + '\n' + claim
result.append(claims)
return result
def generate_claims_qwen(self):
"""
Generate claims for each cluster using Qwen API.
Returns:
list: A list of strings, where each string contains the claims generated
for a cluster.
"""
result = []
openai_api_key = os.getenv("OPENAI_API_KEY")
openai_api_base = os.getenv("OPENAI_API_BASE")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
for i in range(len(self.cluster)):
cluster = self.cluster[i]
claims = ''
data = cluster['info']
for j in range(len(data)):
entry = data.iloc[j]
title = entry['title']
abstract = entry['abstract']
# Construct the prompt for Qwen
prompt = f'''
Title:
{title}
Abstract:
{abstract}
Task:
Conclude new findings and null findings from the abstract in one sentence in the atomic format. Do not separate
new findings and null findings. The finding must be relevant to the title. Do not include any other information.
Definition:
A scientific claim is an atomic verifiable statement expressing a finding about one aspect of a scientific entity or
process, which can be verified from a single source.
'''
# Define the input for Qwen
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
try:
# Call Qwen API
chat_response = client.chat.completions.create(
model=os.environ.get("MODEL"),
max_tokens=512,
temperature=0.5,
messages=messages
)
# Extract the generated claim from Qwen's response
claim = ""
for chunk in chat_response:
if "content" in chunk.choices[0].delta:
claim += chunk.choices[0].delta.content
# Clean and append the claim
claims = claims + '\n' + claim.strip()
# print("Generated claim:", claim)
# print("+++++++++++++++++++++++++++++++++")
except Exception as e:
print(f"Error generating claim for entry {j} in cluster {i}: {e}")
continue
result.append(claims)
return result
def generate_outline(self, survey_title):
claims = self.generate_claims()
cluster_with_claims = ""
for i in range(len(self.cluster)):
cluster = self.cluster[i]
cluster_with_claims = cluster_with_claims + f'Cluster {i}: {cluster["name"]}\n' + "Descriptions for entities in this cluster: \n" + claims[i] + '\n\n'
# system_prompt = f'''
# You are a helpful assistant who is helping a researcher to generate an outline for a survey paper.
# The references used by this survey paper have been clustered into different categories.
# The researcher will provides you with the title of the survey paper
# together with the cluster names and the descriptions for entities in each cluster.
# '''
system_prompt = f'''Generate the outline of the survey paper following the format of the example : [[1, '1 Introduction'], [1, '2 Perturbations of (co)differentials'], [2, '2.1 Derivations of the tensor algebra'], [more sections...]].\
The first element in the sub-list refers to the hierachy of the section name (from 1 to 3). Sections like Introduction and Conclusion should have the highest level (1)\
The second element in the sub-list refers to the section name.
'''
example_json = {"title":"A Survey of Huebschmann and Stasheff's Paper: Formal Solution of the Master Equation via HPT and Deformation Theory","outline":[{"title":"1 Introduction","outline":[]},{"title":"2 Perturbations of (co)differentials","outline":[{"title":"2.1 Derivations of the tensor algebra","outline":[]},{"title":"2.2 Coderivations of the tensor coalgebra","outline":[]},{"title":"2.3 Coderivations of the symmetric coalgebra","outline":[]},{"title":"2.4 DGLA\u2019s and perturbations of the codifferential","outline":[]},{"title":"2.5 Strongly homotopy Lie algebras","outline":[]},{"title":"2.6 The Hochschild chain complex and DGA\u2019s","outline":[]},{"title":"2.7 Strongly homotopy associative algebras","outline":[]}]},{"title":"3 Master equation","outline":[]},{"title":"4 Twisting cochain","outline":[{"title":"4.1 Differential on Hom","outline":[]},{"title":"4.2 Cup product and cup bracket","outline":[]},{"title":"4.3 Twisting cochain","outline":[]}]},{"title":"5 Homological perturbation theory (HPT)","outline":[{"title":"5.1 Contraction","outline":[]},{"title":"5.2 The first main theorem.","outline":[]}]},{"title":"6 Corollaries and the second main theorem","outline":[{"title":"6.1 Other corollaries of Theorem\u00a01.","outline":[]},{"title":"6.2 The second main theorem","outline":[]}]},{"title":"7 Differential Gerstenhaber and BV algebras","outline":[{"title":"7.1 Differential Gerstenhaber algebras","outline":[]},{"title":"7.2 Differential BV algebras","outline":[]},{"title":"7.3 Formality","outline":[{"title":"7.3.1 Formality of differential graded P\ud835\udc43Pitalic_P-algebras","outline":[]},{"title":"7.3.2 Examples","outline":[]}]},{"title":"7.4 Differential BV algebras and formality","outline":[]}]},{"title":"8 Deformation theory","outline":[]},{"title":"References","outline":[]}]}
# user_prompt = {"survey_title":survey_title, "claims":cluster_with_claims}
user_prompt = f'''Generate the outline of the survey paper given the title:{survey_title}, and three lists of sentences describing each cluster of the references used by this survey:{cluster_with_claims}'''
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content":"[[1, '1 Abstract'], [1, '2 Introduction'], "}
]
outputs = self.pipeline(
messages,
max_new_tokens=9192,
)
result = outputs[0]["generated_text"][-1]['content']
self.pipeline.model.disable_adapters()
return messages, result
def generate_outline_qwen(self, survey_title, cluster_num = 3):
claims = self.generate_claims()
cluster_with_claims = ""
cluster_names = []
for i in range(cluster_num): # 改为 cluster_num
cluster = self.cluster[i]
cluster_with_claims += f'Cluster {i}: {cluster["name"]}\nDescriptions for reference papers in this cluster:\n{claims[i]}\n\n'
cluster_names.append(cluster["name"])
# system_prompt = f'''
# You are a helpful assistant who is helping a researcher to generate an outline for a survey paper.
# The references used by this survey paper have been clustered into different categories.
# The researcher will provides you with the title of the survey paper
# together with the cluster names and the descriptions for entities in each cluster.
# '''
system_prompt = f'''Finish the outline of the survey paper following the format of the example : [[1, '1 Introduction'], [1, '2 Perturbations of (co)differentials'], [2, '2.1 Derivations of the tensor algebra'], [3, '2.2.1 ...']......].\
The first element in the sub-list refers to the hierachy of the section name (from 1 to 3). Sections like Introduction and Conclusion should have the highest level (1)\
The second element in the sub-list refers to the section name.
You are required to finish the second and third level subsections name under [1, '3 <Cluster 0's name>'], [1, '4 <Cluster 1's name>'] and [1, '5 <Cluster 2's name>']
You must not generate third level susections over *3* for each second level subsection, for example, [3, '3.1.4 xxx'], [3, '3.1.5 xxx'] are not allowed.
*Try to conclude the main findings of each cluster in the second and third level subsections, use highly abstract terms and phrases to describe*
*Do not include colons, e.g. AutoSurvey: Large Language Models Can Automatically Write Surveys should be written in Large Language Models in Writing Surveys*
'''
# user_prompt = {"survey_title":survey_title, "claims":cluster_with_claims}
cluster_sections = "\n".join([f"[1, '{i+3} {cluster_names[i]}'], [level 2 and 3 sections to finish...]" for i in range(cluster_num)])
user_prompt = f'''Finish the outline of the survey paper given the title: {survey_title}, and lists of sentences describing each cluster of the references used by this survey:\n{cluster_with_claims}
The first level sections' hierarchy is given: [[1, '1 Abstract'], [1, '2 Introduction'], {cluster_sections}, [1, '{cluster_num+3} Future Directions'], [1, '{cluster_num+4} Conclusion']].
You are required to finish the second and third level subsections under each cluster section with [2, 'a.b xxx'] and [3, 'a.b.c xxx'].
You must not generate third level susections over *3* for each second level subsection, for example, [3, '3.1.4 xxx'], [3, '3.1.5 xxx'] are not allowed.
*Try to conclude the main findings of each cluster in the second and third level subsections, use highly abstract terms and phrases to describe*
*Do not include colons, e.g. AutoSurvey: Large Language Models Can Automatically Write Surveys should be written in Large Language Models in Writing Surveys*
'''
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
openai_api_key = os.getenv("OPENAI_API_KEY")
openai_api_base = os.getenv("OPENAI_API_BASE")
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key = openai_api_key,
base_url = openai_api_base,
)
chat_response = client.chat.completions.create(
model=os.environ.get("MODEL"),
max_tokens=2048,
temperature=0.5,
stop="<|im_end|>",
stream=True,
messages= messages
)
# Stream the response to console
text = ""
for chunk in chat_response:
if chunk.choices[0].delta.content:
text += chunk.choices[0].delta.content
# print('The response is :', text)
pattern = r'\[(.*)\]'
match = re.search(pattern, text, re.DOTALL) # re.DOTALL 允许 . 匹配换行符
text = match.group(1)
clean_text = re.sub(r'\s+', ' ', text).strip()
return messages, clean_text
def parseOutline(survey_id):
file_path = f'./src/static/data/txt/{survey_id}/outline.json'
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
except Exception as e:
print(f"Error loading JSON file {file_path}: {e}")
return []
response = data.get('outline', '')
if not response:
print("No outline content found in JSON.")
return []
# 提取文本中第一个 '[' 与最后一个 ']' 之间的内容
def extract_first_last(text):
first_match = re.search(r'\[', text)
last_match = re.search(r'\](?!.*\])', text) # 使用负向前瞻查找最后一个 ']'
if first_match and last_match:
return '[' + text[first_match.start() + 1:last_match.start()] + ']'
return None
response_extracted = extract_first_last(response)
if not response_extracted:
print("Failed to extract a valid list string from the outline content.")
return []
# 检查提取结果是否为“列表的列表”格式(应该以 "[[" 开头)
fixed_str = response_extracted.strip()
if not fixed_str.startswith("[["):
# 如果不是,则去掉原有的首尾括号,再重新包装:[[ ... ]]
# 注意:这种方式假定内部结构是以逗号分隔的多个列表,而不是单个列表。
fixed_str = "[[" + fixed_str[1:-1] + "]]"
# 或者根据你的实际情况,也可简单包装外层括号:
# fixed_str = "[" + fixed_str + "]"
try:
outline_list = ast.literal_eval(fixed_str)
except Exception as e:
print(f"Error converting extracted outline to a list.\nExtracted text: {fixed_str}\nError: {e}")
return []
# 如果结果不是列表,则转换成列表
if not isinstance(outline_list, list):
outline_list = list(outline_list)
# 如果解析结果不是列表的列表,而是单个列表(例如 [a, b, c]),则将其包装成一个列表
if outline_list and not all(isinstance(item, list) for item in outline_list):
outline_list = [outline_list]
result = []
for item in outline_list:
result.append(item)
return result
def generateOutlineHTML_qwen(survey_id):
outline_list = parseOutline(survey_id)
html = '''
<div class="container-fluid w-50 d-flex flex-column justify-content-center align-items-center">
<style>
/* 不同层级的样式 */
.level-1 {
font-size: 20px;
font-weight: bold;
position: relative;
padding-right: 40px; /* 为箭头留出空间 */
}
.level-2 {
font-size: 18px;
padding-left: 40px;
}
.level-3 {
font-size: 16px;
padding-left: 80px;
}
.list-group-item {
border: none;
}
/* 自定义卡片样式 */
.custom-card {
background-color: #fff;
border-radius: 8px;
padding: 20px;
margin-top: 20px;
width: 100%;
max-width: 800px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1),
0 6px 20px rgba(0, 0, 0, 0.1);
}
/* 自定义卡片主体样式 */
.custom-card-body {
padding: 20px;
}
/* 折叠图标样式 */
.collapse-icon {
background: none;
border: none;
padding: 0;
position: absolute;
right: 10px;
top: 50%;
transform: translateY(-50%) rotate(0deg);
cursor: pointer;
font-size: 16px;
/* 旋转过渡效果 */
transition: transform 0.2s;
}
/* 去除按钮聚焦时的轮廓 */
.collapse-icon:focus {
outline: none;
}
/* 当折叠展开时旋转图标 */
.collapsed .collapse-icon {
transform: translateY(-50%) rotate(0deg);
}
.in .collapse-icon {
transform: translateY(-50%) rotate(90deg);
}
</style>
<div class="custom-card">
<div class="custom-card-body" id="display-outline">
<ul class="list-group list-group-flush">
'''
# 添加默认的一级标题内容
default_items = []
# 将默认项与解析出的纲要列表合并
combined_list = default_items + outline_list
# 构建树形结构,以便检测一级标题是否有子标题
def build_outline_tree(outline_list):
sections = []
stack = []
for level, content in outline_list:
level = int(level)
node = {'level': level, 'content': content, 'subitems': []}
if level == 1:
sections.append(node)
stack = [node]
elif level == 2:
if stack:
parent = stack[-1]
parent['subitems'].append(node)
# stack.append(node)
else:
sections.append(node)
elif level == 3:
if stack:
parent = stack[-1]
parent['subitems'].append(node)
else:
sections.append(node)
return sections
sections = build_outline_tree(combined_list)
# 生成 HTML
def generate_html_from_sections(sections):
html = ''
section_index = 1 # 用于生成唯一的 ID
def generate_node_html(node):
nonlocal section_index
level = node['level']
content = node['content']
has_subitems = len(node['subitems']) > 0
if level == 1:
# 一级标题
if has_subitems:
# 如果有子标题,添加下拉图标和可折叠功能
section_id = f"outline_collapseSection{section_index}"
section_index += 1
node_html = f'''
<li class="list-group-item level-1">
{content}
<a class="collapsed" data-toggle="collapse" data-target="#{section_id}" aria-expanded="true" aria-controls="{section_id}">
▶ <!-- 右箭头表示折叠状态 -->
</a>
<ul class="list-group collapse in" id="{section_id}">
'''
for subitem in node['subitems']:
node_html += generate_node_html(subitem)
node_html += '''
</ul>
</li>
'''
else:
# 如果没有子标题,不显示下拉图标
node_html = f'''
<li class="list-group-item level-1">
{content}
</li>
'''
elif level == 2:
node_html = f'<li class="list-group-item level-2">{content}</li>'
elif level == 3:
# 三级标题直接显示,已经在二级标题中处理
node_html = f'<li class="list-group-item level-3">{content}</li>'
return node_html
for section in sections:
html += generate_node_html(section)
return html
def generate_list_html(combined_list, editable=True):
html = '<ul class="list-group list-group-flush">\n' # 开始 <ul>
for level, content in combined_list:
# 根据层级添加对应的 class
if level == 1: # Level 1 的输入框需要禁用
if editable:
html += f'<li class="list-group-item level-1"><input type="text" class="form-control" value="{content}" disabled></li>\n'
else:
html += f'<li class="list-group-item level-1">{content}</li>\n'
elif level == 2:
if editable:
html += f'<li class="list-group-item level-2" style="padding-left: 20px;"><input type="text" class="form-control" value="{content}"></li>\n'
else:
html += f'<li class="list-group-item level-2" style="padding-left: 20px;">{content}</li>\n'
elif level == 3:
if editable:
html += f'<li class="list-group-item level-3" style="padding-left: 40px;"><input type="text" class="form-control" value="{content}"></li>\n'
else:
html += f'<li class="list-group-item level-3" style="padding-left: 40px;">{content}</li>\n'
html += '</ul>' # 结束 </ul>
return html
# 生成列表 HTML
list_html = generate_list_html(combined_list)
html += generate_html_from_sections(sections)
html += f'''
</ul>
</div>
<div class="custom-card-body" style="display: none" id="edit-outline">
{list_html}
</div>
<button type="button" class="btn btn-secondary btn-lg" id="edit-btn" onclick="editOutline()"><i class="bi bi-pen"></i></button>
<button type="button" class="btn btn-success btn-lg" id="confirm-btn" style="display: none;" onclick="confirmOutline()"><i class="bi bi-check"></i></button>
</div>
<!-- 添加 Bootstrap v3.3.0 的 JavaScript 来处理折叠功能 -->
<script>
$(document).ready(function(){{
$('.collapsed').click(function(){{
$(this).toggleClass('collapsed');
}});
}});
</script>
</div>
'''
html+='''
<script>
// 切换到编辑模式
function editOutline() {
document.getElementById("display-outline").style.display = "none"; // 隐藏不可编辑部分
document.getElementById("edit-outline").style.display = "block"; // 显示可编辑部分
// 显示 "Confirm" 按钮,隐藏 "Edit" 按钮
document.getElementById("edit-btn").style.display = "none";
document.getElementById("confirm-btn").style.display = "inline-block";
}
// 确认编辑并提交数据
function confirmOutline() {
const outlineData = []; // 用于存储提交到后端的数据
// 遍历所有的可编辑输入框
document.querySelectorAll("#edit-outline .list-group-item").forEach((item) => {
const level = item.classList.contains("level-1") ? 1 :
item.classList.contains("level-2") ? 2 : 3; // 获取层级
const content = item.querySelector("input").value.trim(); // 获取编辑框的值
// 将数据转换为数组格式 [level, content]
outlineData.push([level, content]);
});
console.log("Submitting to backend:", outlineData); // 打印提交数据以供调试
// 使用 AJAX 提交数据到后端
const csrftoken = getCookie("csrftoken"); // 获取 CSRF token
fetch("/save_outline/", {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-CSRFToken": csrftoken, // Django 的 CSRF 令牌
},
body: JSON.stringify({ outline: outlineData }) // 将数据转换为 JSON 字符串
})
.then((response) => response.json())
.then((data) => {
if (data.status === "success") {
$('#sections_').html(data.html);
alert("Outline updated successfully!");
} else {
alert("Error updating outline: " + data.message);
}
})
.catch((error) => {
console.error("Error:", error);
alert("Error updating outline. Please check the console for details.");
});
}
</script>
'''
return html
def insert_section(content, section_header, section_content):
"""
在 content 中找到以 section_header 开头的行,并在其后插入 section_content
section_header: 标题名称,例如 "Abstract" 或 "Conclusion"
section_content: 要插入的内容(字符串)
"""
# 修改正则表达式,使得数字后的点是可选的
pattern = re.compile(
r'(^#\s+\d+\.?\s+' + re.escape(section_header) + r'\s*$)',
re.MULTILINE | re.IGNORECASE
)
replacement = r'\1\n\n' + section_content + '\n'
new_content, count = pattern.subn(replacement, content)
if count == 0:
print(f"警告: 未找到标题 '{section_header}'。无法插入内容。")
return new_content
def generateOutlineHTML(survey_id):
outline_list = parseOutline(survey_id)
html = '''
<div class="container-fluid w-50 d-flex flex-column justify-content-center align-items-center">
<style>
/* 不同层级的样式 */
.level-1 {
font-size: 20px;
font-weight: bold;
position: relative;
padding-right: 40px; /* 为箭头留出空间 */
}
.level-2 {
font-size: 18px;
padding-left: 40px;
}
.level-3 {
font-size: 16px;
padding-left: 80px;
}
.list-group-item {
border: none;
}
/* 自定义卡片样式 */
.custom-card {
background-color: #fff;
border-radius: 8px;
padding: 20px;
margin-top: 20px;
width: 100%;
max-width: 800px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1),
0 6px 20px rgba(0, 0, 0, 0.1);
}
/* 自定义卡片主体样式 */
.custom-card-body {
padding: 20px;
}
/* 折叠图标样式 */
.collapse-icon {
background: none;
border: none;
padding: 0;
position: absolute;
right: 10px;
top: 50%;
transform: translateY(-50%) rotate(0deg);
cursor: pointer;
font-size: 16px;
/* 旋转过渡效果 */
transition: transform 0.2s;
}
/* 去除按钮聚焦时的轮廓 */
.collapse-icon:focus {
outline: none;
}
/* 当折叠展开时旋转图标 */
.collapsed .collapse-icon {
transform: translateY(-50%) rotate(0deg);
}
.in .collapse-icon {
transform: translateY(-50%) rotate(90deg);
}
</style>
<div class="custom-card">
<div class="custom-card-body">
<ul class="list-group list-group-flush">
'''
# 添加默认的一级标题内容
default_items = [[1, '1 Abstract'], [1, '2 Introduction']]
# 将默认项与解析出的纲要列表合并
combined_list = default_items + outline_list
# 构建树形结构,以便检测一级标题是否有子标题
def build_outline_tree(outline_list):
sections = []
stack = []
for level, content in outline_list:
level = int(level)
node = {'level': level, 'content': content, 'subitems': []}
if level == 1:
sections.append(node)
stack = [node]
elif level == 2:
if stack:
parent = stack[-1]
parent['subitems'].append(node)
# stack.append(node)
else:
sections.append(node)
elif level == 3:
if stack:
parent = stack[-1]
parent['subitems'].append(node)
else:
sections.append(node)
return sections
sections = build_outline_tree(combined_list)
# 生成 HTML
def generate_html_from_sections(sections):
html = ''
section_index = 1 # 用于生成唯一的 ID
def generate_node_html(node):
nonlocal section_index
level = node['level']
content = node['content']
has_subitems = len(node['subitems']) > 0
if level == 1:
# 一级标题
if has_subitems:
# 如果有子标题,添加下拉图标和可折叠功能
section_id = f"outline_collapseSection{section_index}"
section_index += 1
node_html = f'''
<li class="list-group-item level-1">
{content}
<a class="collapsed" data-toggle="collapse" data-target="#{section_id}" aria-expanded="true" aria-controls="{section_id}">
▶ <!-- 右箭头表示折叠状态 -->
</a>
<ul class="list-group collapse in" id="{section_id}">
'''
for subitem in node['subitems']:
node_html += generate_node_html(subitem)
node_html += '''
</ul>
</li>
'''
else:
# 如果没有子标题,不显示下拉图标
node_html = f'''
<li class="list-group-item level-1">
{content}
</li>
'''
elif level == 2:
node_html = f'<li class="list-group-item level-2">{content}</li>'
elif level == 3:
# 三级标题直接显示,已经在二级标题中处理
node_html = f'<li class="list-group-item level-3">{content}</li>'
return node_html
for section in sections:
html += generate_node_html(section)
return html
html += generate_html_from_sections(sections)
html += '''
</ul>
</div>
</div>
<!-- 添加 Bootstrap v3.3.0 的 JavaScript 来处理折叠功能 -->
<script>
$(document).ready(function(){
// 切换箭头方向
$('.collapsed').click(function(){
$(this).toggleClass('collapsed');
});
});
</script>
</div>
'''
return html
def insert_section(content, section_header, section_content):
"""
在 content 中找到以 section_header 开头的行,并在其后插入 section_content
section_header: 标题名称,例如 "Abstract" 或 "Conclusion"
section_content: 要插入的内容(字符串)
"""
# 修改正则表达式,使得数字后的点是可选的
pattern = re.compile(
r'(^#\s+\d+\.?\s+' + re.escape(section_header) + r'\s*$)',
re.MULTILINE | re.IGNORECASE
)
replacement = r'\1\n\n' + section_content + '\n'
new_content, count = pattern.subn(replacement, content)
if count == 0:
print(f"警告: 未找到标题 '{section_header}'。无法插入内容。")
return new_content
def generateSurvey(survey_id, title, collection_list, pipeline):
outline = parseOutline(survey_id)
default_items = [[1, '1 Abstract'], [1, '2 Introduction'], [1, '3 Overview']]
outline = str(default_items + outline)
client = getQwenClient()
context_list = generate_context_list(outline, collection_list)
temp = {
"survey_id": survey_id,
"outline": str(default_items),
"survey_title": title,
"context": context_list,
"abstract": "",
"introduction": "",
"content": "",
"conclusion": "",
"references": ""
}
generated_survey_paper = generate_survey_paper_new(outline, context_list, client)
generated_introduction = generate_introduction(generated_survey_paper, client)
# print("\nGenerated Introduction:\n", generated_introduction)
abs_generator = AbstractGenerator(pipeline)
abstract = abs_generator.generate(title, generated_introduction)
con_generator = ConclusionGenerator(pipeline)
conclusion = con_generator.generate(title, generated_introduction)
abstract = abstract.replace("Abstract:", "")
conclusion = conclusion.replace("Conclusion:", "")
temp["abstract"] = abstract
temp["introduction"] = generated_introduction
temp["content"] = generated_survey_paper
temp["conclusion"] = conclusion
temp["content"] = insert_section(temp["content"], "Abstract", temp["abstract"])
temp["content"] = insert_section(temp["content"], "Conclusion", temp["conclusion"])
output_path = f'./src/static/data/txt/{survey_id}/generated_result.json'
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(temp, f, ensure_ascii=False, indent=4)
print(f"Survey has been saved to {output_path}.")
return
def generate_future_directions_qwen(client, title, intro):
system_prompt = f'''You are a helpful assistant that help to generate the future directions of the survey paper given the survey title and survey introduction.'''
# user_prompt = {"survey_title":survey_title, "claims":cluster_with_claims}
user_prompt = f'''Help me to generate the future directions of a survey paper given the title: *{title}*, and and the introduction:{intro} within 300 words.'''
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content":"Future Directions:"}
]
openai_api_key = os.getenv("OPENAI_API_KEY")
openai_api_base = os.getenv("OPENAI_API_BASE")
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key = openai_api_key,
base_url = openai_api_base,
)
chat_response = client.chat.completions.create(
model=os.environ.get("MODEL"),
max_tokens=768,
temperature=0.5,
stop="<|im_end|>",
stream=True,
messages= messages
)
# Stream the response to console
text = ""
for chunk in chat_response:
if chunk.choices[0].delta.content:
text += chunk.choices[0].delta.content
return text
def generateSurvey_qwen(survey_id, title, collection_list, pipeline):
outline = str(parseOutline(survey_id))
client = getQwenClient()
context_list = generate_context_list(outline, collection_list)
temp = {
"survey_id": survey_id,
"outline": outline,
"survey_title": title,
"context": context_list,
"abstract": "",
"introduction": "",
"content": "",
"future_directions":"",
"conclusion": "",
"references": ""
}
generated_survey_paper = generate_survey_paper_new(title, outline, context_list, client)
# print("Generated Survey Paper:\n", generated_survey_paper)
generated_introduction = generate_introduction(generated_survey_paper, client)
# print("\nGenerated Introduction:\n", generated_introduction)
abs_generator = AbstractGenerator(pipeline)
abstract = abs_generator.generate(title, generated_introduction)
con_generator = ConclusionGenerator(pipeline)
# conclusion = con_generator.generate(title, generated_introduction)
#New version: 12/03
conclusion = generate_conclusion(generated_survey_paper, client)
abstract = abstract.replace("Abstract:", "")
conclusion = conclusion.replace("Conclusion:", "")
# future_directions = generate_future_directions_qwen(client, title, generated_introduction).replace("Future Directions:","")
#New version: 12/03
future_directions = generate_future_work(generated_survey_paper, client)
# references = generate_references_dir('./src/static/data/txt/'+survey_id)
temp["abstract"] = abstract
temp["introduction"] = generated_introduction
temp["content"] = generated_survey_paper
temp["conclusion"] = conclusion
temp["future_directions"] = future_directions
# temp["references"] = "\n\n".join([f"{ref}" for i, ref in enumerate(references)])
temp["content"] = insert_section(temp["content"], "Abstract", temp["abstract"])
temp["content"] = insert_section(temp["content"], "Conclusion", temp["conclusion"])
temp["content"] = insert_section(temp["content"], "Future Directions", temp["future_directions"])
output_path = f'./src/static/data/txt/{survey_id}/generated_result.json'
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(temp, f, ensure_ascii=False, indent=4)
print(f"Survey has been saved to {output_path}.")
return
# wza
def generateSurvey_qwen_new(survey_id, title, collection_list, pipeline, citation_data_list):
outline = str(parseOutline(survey_id))
client = getQwenClient()
context_list = generate_context_list(outline, collection_list)
temp = {
"survey_id": survey_id,
"outline": outline,
"survey_title": title,
"context": context_list,
"abstract": "",
"introduction": "",
"content": "",
"future_directions": "",
"conclusion": "",
"references": ""
}
# 调用generate_survey_paper_new时传入citation_data_list
generated_survey_paper = generate_survey_paper_new(title, outline, context_list, client, citation_data_list)
generated_introduction = generate_introduction_alternate(title, generated_survey_paper, client)
# generated_introduction = introduction_with_citations(generated_introduction, citation_data_list)
# print("\nGenerated Introduction:\n", generated_introduction)
# abs_generator = AbstractGenerator(pipeline)
# abstract = abs_generator.generate(title, generated_introduction)
abstract = generate_abstract(generated_survey_paper, client)
# con_generator = ConclusionGenerator(pipeline)
# conclusion = con_generator.generate(title, generated_introduction)
conclusion = generate_conclusion(generated_survey_paper, client)
abstract = abstract.replace("Abstract:", "")
conclusion = conclusion.replace("Conclusion:", "")
# future_directions = generate_future_directions_qwen(client, title, generated_introduction).replace("Future Directions:","")
#New version: 12/03
future_directions = generate_future_work(generated_survey_paper, client)
# references = generate_references_dir('./src/static/data/txt/'+survey_id)
temp["abstract"] = abstract
temp["introduction"] = generated_introduction
temp["content"] = generated_survey_paper
temp["conclusion"] = conclusion
temp["future_directions"] = future_directions
# temp["references"] = "\n\n".join([f"{ref}" for i, ref in enumerate(references)])
temp["content"] = insert_section(temp["content"], "Abstract", temp["abstract"])
temp["content"] = insert_section(temp["content"], "Conclusion", temp["conclusion"])
temp["content"] = insert_section(temp["content"], "Future Directions", temp["future_directions"])
output_path = f'./src/static/data/txt/{survey_id}/generated_result.json'
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(temp, f, ensure_ascii=False, indent=4)
print(f"Survey has been saved to {output_path}.")
return
def generate_references_dir(dir):
client = getQwenClient()
papers_info = []
for file in os.listdir(dir):
if file.endswith(".json"):
file_path = os.path.join(dir, file)
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
papers_info.append({
"file_path": file_path,
"title": data.get("title", "Unknown Title"),
"authors": data.get("authors", "Unknown Author")
})
print("The length of papers_info is: ", len(papers_info))
references = generate_references(papers_info, client)
return references
if __name__ == '__main__':
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
context = '''
Many paradigms have been proposed to asses informativeness of data samples for active learning. One of the popular approaches is selecting the most uncertain data sample, i.e the data sample in which current classifier is least confident. Some other approaches are selecting the sample which yields a model with minimum risk or the data sample which yields fastest convergence in gradient based methods.//
An active under-sampling approach is presented in this paper to change the data distribution of training datasets, and improve the classification accuracy of minority classes while maintaining overall classification performance.//
In this paper, we propose an uncertainty-based active learning algorithm which requires only samples of one class and a set of unlabeled data in order to operate.//
The principal contribution of our work is twofold: First, we use Bayes’ rule and density estimation to avoid the need to have a model of all classes for computing the uncertainty measure.//
This technique reduces the number of input parameters of the problem. At the rest of this paper, we first review recent related works in the fields of active learning and active one-class learning (section II).//
The classifier predicts that all the samples are non-fraud, it will have a quite high accuracy. However, for problems like fraud detection, minority class classification accuracy is more critical.//
The algorithm used and the features selected are always the key points at design time, and many experiments are needed to select the final algorithm and the best suited feature set.//
Active learning works by selecting among unlabeled data, the most informative data sample. The informativeness of a sample is the amount of accuracy gain achieved after adding it to the training set.//
Some other approaches are selecting the sample which yields a model with minimum risk or the data sample which yields fastest convergence in gradient based methods.//
In this paper, we propose a novel approach reducing each within group error, BABoost, that is a variant of AdaBoost.//
Simulations on different unbalanced distribution data and experiments performed on several real datasets show that the new method is able to achieve a lower within group error.//
Active learning with early stopping can achieve a faster and scalable solution without sacrificing prediction performance.//
We also propose an efficient Support Vector Machine (SVM) active learning strategy which queries a small pool of data at each iterative step instead of querying the entire dataset.//
The second part consists of applying a treatment method and inducing a classifier for each class distribution.//
This time we measured the percentage of the performance loss that was recovered by the treatment method.//
We used two well-known over-sampling methods, random over-sampling and SMOTE.//
We tested our proposed technique on a sample of three representative functional genomic problems: splice site, protein subcellular localization and phosphorylation site prediction problems.//
Among the possible PTMs, phosphorylation is the most studied and perhaps the most important.//
The second part consists of applying a treatment method and inducing a classifier for each class distribution.//
We show that Active Learning (AL) strategy can be a more efficient alternative to resampling methods to form a balanced training set for the learner in early stages of the learning.//
'''
collection_list = ['activelearningfrompositiveandunlabeleddata', ]
Global_pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
token = os.getenv('HF_API_KEY'),
device_map="auto",
)
Global_pipeline.model.load_adapter(peft_model_id = "technicolor/llama3.1_8b_outline_generation", adapter_name="outline")
Global_pipeline.model.load_adapter(peft_model_id ="technicolor/llama3.1_8b_conclusion_generation", adapter_name="conclusion")
Global_pipeline.model.load_adapter(peft_model_id ="technicolor/llama3.1_8b_abstract_generation", adapter_name="abstract")
generateSurvey("test", "Predictive modeling of imbalanced data", collection_list, Global_pipeline)
|