Spaces:
Sleeping
Sleeping
File size: 4,151 Bytes
80c0e03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
#!/usr/bin/env python3
"""
测试脚本:验证 Hugging Face 缓存目录修复是否有效
"""
import os
import sys
import tempfile
# 添加 src 目录到 Python 路径
sys.path.insert(0, 'src')
print(f"Python path: {sys.path[:3]}")
def test_cache_setup():
"""测试缓存目录设置"""
print("=== 测试缓存目录设置 ===")
# 测试本地环境
print("\n1. 测试本地环境(无 SPACE_ID):")
if 'SPACE_ID' in os.environ:
del os.environ['SPACE_ID']
if 'HF_SPACE_ID' in os.environ:
del os.environ['HF_SPACE_ID']
try:
print(" 正在导入 setup_hf_cache...")
from demo.path_utils import setup_hf_cache
print(" 导入成功,正在调用 setup_hf_cache...")
cache_dir = setup_hf_cache()
print(f" 缓存目录: {cache_dir}")
print(" ✅ 本地环境测试通过")
except Exception as e:
print(f" ❌ 本地环境测试失败: {e}")
import traceback
traceback.print_exc()
# 测试 Hugging Face Spaces 环境
print("\n2. 测试 Hugging Face Spaces 环境(有 SPACE_ID):")
os.environ['SPACE_ID'] = 'test_space_123'
try:
cache_dir = setup_hf_cache()
print(f" 缓存目录: {cache_dir}")
if cache_dir and os.path.exists(cache_dir):
print(" ✅ Hugging Face Spaces 环境测试通过")
else:
print(" ❌ 缓存目录不存在")
except Exception as e:
print(f" ❌ Hugging Face Spaces 环境测试失败: {e}")
import traceback
traceback.print_exc()
def test_embedder_initialization():
"""测试 embedder 初始化"""
print("\n=== 测试 Embedder 初始化 ===")
# 设置 Hugging Face Spaces 环境
os.environ['SPACE_ID'] = 'test_space_456'
try:
from demo.path_utils import setup_hf_cache
from langchain_community.embeddings import HuggingFaceEmbeddings
cache_dir = setup_hf_cache()
print(f"使用缓存目录: {cache_dir}")
# 尝试初始化 embedder
print("正在初始化 HuggingFaceEmbeddings...")
embedder = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
cache_folder=cache_dir
)
print("✅ Embedder 初始化成功")
# 测试简单的嵌入
test_text = "This is a test sentence."
print("正在测试嵌入...")
embedding = embedder.embed_query(test_text)
print(f"✅ 嵌入测试成功,向量维度: {len(embedding)}")
except Exception as e:
print(f"❌ Embedder 初始化失败: {e}")
import traceback
traceback.print_exc()
def test_sentence_transformer():
"""测试 SentenceTransformer"""
print("\n=== 测试 SentenceTransformer ===")
# 设置 Hugging Face Spaces 环境
os.environ['SPACE_ID'] = 'test_space_789'
try:
from demo.path_utils import setup_hf_cache
from sentence_transformers import SentenceTransformer
cache_dir = setup_hf_cache()
print(f"使用缓存目录: {cache_dir}")
# 尝试初始化 SentenceTransformer
print("正在初始化 SentenceTransformer...")
model = SentenceTransformer(
"nomic-ai/nomic-embed-text-v1",
trust_remote_code=True,
cache_folder=cache_dir
)
print("✅ SentenceTransformer 初始化成功")
# 测试简单的嵌入
test_text = "This is a test sentence."
print("正在测试嵌入...")
embedding = model.encode(test_text)
print(f"✅ 嵌入测试成功,向量维度: {len(embedding)}")
except Exception as e:
print(f"❌ SentenceTransformer 初始化失败: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
print("开始测试 Hugging Face 缓存目录修复...")
test_cache_setup()
test_embedder_initialization()
test_sentence_transformer()
print("\n=== 测试完成 ===") |