Spaces:
Sleeping
Sleeping
import os | |
import re | |
import json | |
import subprocess | |
import glob | |
from pathlib import Path | |
from concurrent.futures import ProcessPoolExecutor | |
from langchain_community.document_loaders import UnstructuredMarkdownLoader | |
from langchain.schema import Document | |
import shutil | |
import tempfile | |
from .path_utils import get_path | |
class DocumentLoading: | |
def convert_pdf_to_md(self, pdf_file, output_dir="output", method="auto"): | |
base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
target_dir = os.path.join(output_dir, base_name) | |
md_file_path = os.path.join(target_dir, method, f"{base_name}.md") | |
print("The md file path is: ", md_file_path) | |
if os.path.exists(md_file_path): | |
print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True) | |
return | |
command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] | |
try: | |
subprocess.run(command, check=True) | |
# 检查是否生成了 Markdown 文件 | |
if not os.path.exists(md_file_path): | |
print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...") | |
shutil.rmtree(target_dir) # 删除生成的文件夹 | |
else: | |
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred during conversion: {e}") | |
# 如果发生错误且文件夹已生成,则删除文件夹 | |
if os.path.exists(target_dir): | |
print(f"Cleaning up incomplete folder: {target_dir}") | |
shutil.rmtree(target_dir) | |
# new | |
def convert_pdf_to_md_new(self, pdf_dir, output_dir="output", method="auto"): | |
pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) | |
for pdf_file in pdf_files: | |
base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
target_dir = os.path.join(output_dir, base_name) | |
if os.path.exists(target_dir): | |
print(f"Folder for {pdf_file} already exists in {output_dir}. Skipping conversion.") | |
else: | |
command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] | |
try: | |
subprocess.run(command, check=True) | |
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred: {e}") | |
def batch_convert_pdfs(pdf_files, output_dir="output", method="auto", max_workers=None): | |
# Create a process pool to run the conversion in parallel | |
with ProcessPoolExecutor(max_workers=max_workers) as executor: | |
# Submit each PDF file to the process pool for conversion | |
futures = [executor.submit(convert_pdf_to_md, pdf, output_dir, method) for pdf in pdf_files] | |
# Optionally, you can monitor the status of each future as they complete | |
for future in futures: | |
try: | |
future.result() # This will raise any exceptions that occurred during the processing | |
except Exception as exc: | |
print(f"An error occurred during processing: {exc}") | |
def extract_information_from_md(self, md_text): | |
title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) | |
title = title_match.group(1).strip() if title_match else "N/A" | |
authors_match = re.search( | |
r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', | |
md_text, | |
re.DOTALL | |
) | |
authors = authors_match.group(1).strip() if authors_match else "N/A" | |
abstract_match = re.search( | |
r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', | |
md_text, | |
re.DOTALL | |
) | |
abstract = abstract_match.group(0).strip() if abstract_match else "N/A" | |
abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) | |
abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) | |
introduction_match = re.search( | |
r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)' | |
r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))', | |
md_text, | |
re.DOTALL | |
) | |
introduction = introduction_match.group(2).strip() if introduction_match else "N/A" | |
main_content_match = re.search( | |
r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)', | |
md_text, | |
re.DOTALL | |
) | |
if main_content_match: | |
main_content = main_content_match.group(1).strip() | |
else: | |
main_content = "N/A" | |
extracted_data = { | |
"title": title, | |
"authors": authors, | |
"abstract": abstract, | |
"introduction": introduction, | |
"main_content": main_content | |
} | |
return extracted_data | |
def process_md_file(self, md_file_path, survey_id): | |
loader = UnstructuredMarkdownLoader(md_file_path) | |
data = loader.load() | |
assert len(data) == 1, "Expected exactly one document in the markdown file." | |
assert isinstance(data[0], Document), "The loaded data is not of type Document." | |
extracted_text = data[0].page_content | |
extracted_data = self.extract_information_from_md(extracted_text) | |
if len(extracted_data["abstract"]) < 10: | |
extracted_data["abstract"] = extracted_data['title'] | |
title = os.path.splitext(os.path.basename(md_file_path))[0] | |
title_new = title.strip() | |
invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] | |
for char in invalid_chars: | |
title_new = title_new.replace(char, ' ') | |
os.makedirs(get_path('txt', survey_id), exist_ok=True) | |
with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f: | |
json.dump(extracted_data, f, ensure_ascii=False, indent=4) | |
return extracted_data['introduction'] | |
def process_md_file_full(self, md_file_path, survey_id): | |
loader = UnstructuredMarkdownLoader(md_file_path) | |
data = loader.load() | |
assert len(data) == 1, "Expected exactly one document in the markdown file." | |
assert isinstance(data[0], Document), "The loaded data is not of type Document." | |
extracted_text = data[0].page_content | |
extracted_data = self.extract_information_from_md(extracted_text) | |
if len(extracted_data["abstract"]) < 10: | |
extracted_data["abstract"] = extracted_data['title'] | |
title = os.path.splitext(os.path.basename(md_file_path))[0] | |
title_new = title.strip() | |
invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] | |
for char in invalid_chars: | |
title_new = title_new.replace(char, ' ') | |
os.makedirs(get_path('txt', survey_id), exist_ok=True) | |
with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f: | |
json.dump(extracted_data, f, ensure_ascii=False, indent=4) | |
return extracted_data['abstract'] + extracted_data['introduction'] + extracted_data['main_content'] | |
def load_pdf(self, pdf_file, survey_id, mode): | |
base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
target_dir = os.path.join(get_path('md', survey_id), base_name) | |
md_file_path = os.path.join(target_dir, mode, f"{base_name}.md") | |
print("The md file path is: ", md_file_path) | |
if os.path.exists(md_file_path): | |
print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True) | |
return self.process_md_file(md_file_path, survey_id) | |
command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", mode] | |
try: | |
subprocess.run(command, check=True) | |
# 检查是否生成了 Markdown 文件 | |
if not os.path.exists(md_file_path): | |
print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...") | |
shutil.rmtree(target_dir) # 删除生成的文件夹 | |
return None | |
else: | |
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
return self.process_md_file(md_file_path, survey_id) | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred during conversion: {e}") | |
# 如果发生错误且文件夹已生成,则删除文件夹 | |
if os.path.exists(target_dir): | |
print(f"Cleaning up incomplete folder: {target_dir}") | |
shutil.rmtree(target_dir) | |
return None | |
def load_pdf_new(self, pdf_dir, survey_id): | |
pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) | |
for pdf_file in pdf_files: | |
base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
target_dir = os.path.join(get_path('md', survey_id), base_name) | |
if os.path.exists(target_dir): | |
print(f"Folder for {pdf_file} already exists in {get_path('md', survey_id)}. Skipping conversion.") | |
else: | |
command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", "auto"] | |
try: | |
subprocess.run(command, check=True) | |
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred: {e}") | |
def parallel_load_pdfs(self, pdf_files, survey_id, max_workers=4): | |
# Create a process pool to run the conversion in parallel | |
with ProcessPoolExecutor(max_workers=max_workers) as executor: | |
# Submit each PDF file to the process pool for conversion | |
futures = [executor.submit(self.load_pdf, pdf, survey_id, "auto") for pdf in pdf_files] | |
# Optionally, you can monitor the status of each future as they complete | |
for future in futures: | |
try: | |
future.result() # This will raise any exceptions that occurred during the processing | |
except Exception as exc: | |
print(f"An error occurred during processing: {exc}") | |
def ensure_non_empty_introduction(self, introduction, full_text): | |
if len(introduction) < 50: | |
return full_text[:1000] | |
return introduction | |
def extract_information_from_md_new(self, md_text): | |
# Title extraction | |
title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) | |
title = title_match.group(1).strip() if title_match else "N/A" | |
# Authors extraction | |
authors_match = re.search( | |
r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', | |
md_text, | |
re.DOTALL | |
) | |
authors = authors_match.group(1).strip() if authors_match else "N/A" | |
# Abstract extraction | |
abstract_match = re.search( | |
r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', | |
md_text, | |
re.DOTALL | |
) | |
abstract = abstract_match.group(0).strip() if abstract_match else "N/A" | |
abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) | |
abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) | |
# Introduction extraction | |
introduction_match = re.search( | |
r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)' | |
r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))', | |
md_text, | |
re.DOTALL | |
) | |
introduction = introduction_match.group(2).strip() if introduction_match else "N/A" | |
# Main content extraction | |
main_content_match = re.search( | |
r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)', | |
md_text, | |
re.DOTALL | |
) | |
if main_content_match: | |
main_content = main_content_match.group(1).strip() | |
else: | |
main_content = "N/A" | |
extracted_data = { | |
"title": title, | |
"authors": authors, | |
"abstract": abstract, | |
"introduction": introduction, | |
"main_content": main_content | |
} | |
return extracted_data |