#!/usr/bin/env python3 """ 测试脚本:验证 Hugging Face 缓存目录修复是否有效 """ import os import sys import tempfile # 添加 src 目录到 Python 路径 sys.path.insert(0, 'src') print(f"Python path: {sys.path[:3]}") def test_cache_setup(): """测试缓存目录设置""" print("=== 测试缓存目录设置 ===") # 测试本地环境 print("\n1. 测试本地环境(无 SPACE_ID):") if 'SPACE_ID' in os.environ: del os.environ['SPACE_ID'] if 'HF_SPACE_ID' in os.environ: del os.environ['HF_SPACE_ID'] try: print(" 正在导入 setup_hf_cache...") from demo.path_utils import setup_hf_cache print(" 导入成功,正在调用 setup_hf_cache...") cache_dir = setup_hf_cache() print(f" 缓存目录: {cache_dir}") print(" ✅ 本地环境测试通过") except Exception as e: print(f" ❌ 本地环境测试失败: {e}") import traceback traceback.print_exc() # 测试 Hugging Face Spaces 环境 print("\n2. 测试 Hugging Face Spaces 环境(有 SPACE_ID):") os.environ['SPACE_ID'] = 'test_space_123' try: cache_dir = setup_hf_cache() print(f" 缓存目录: {cache_dir}") if cache_dir and os.path.exists(cache_dir): print(" ✅ Hugging Face Spaces 环境测试通过") else: print(" ❌ 缓存目录不存在") except Exception as e: print(f" ❌ Hugging Face Spaces 环境测试失败: {e}") import traceback traceback.print_exc() def test_embedder_initialization(): """测试 embedder 初始化""" print("\n=== 测试 Embedder 初始化 ===") # 设置 Hugging Face Spaces 环境 os.environ['SPACE_ID'] = 'test_space_456' try: from demo.path_utils import setup_hf_cache from langchain_community.embeddings import HuggingFaceEmbeddings cache_dir = setup_hf_cache() print(f"使用缓存目录: {cache_dir}") # 尝试初始化 embedder print("正在初始化 HuggingFaceEmbeddings...") embedder = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder=cache_dir ) print("✅ Embedder 初始化成功") # 测试简单的嵌入 test_text = "This is a test sentence." print("正在测试嵌入...") embedding = embedder.embed_query(test_text) print(f"✅ 嵌入测试成功,向量维度: {len(embedding)}") except Exception as e: print(f"❌ Embedder 初始化失败: {e}") import traceback traceback.print_exc() def test_sentence_transformer(): """测试 SentenceTransformer""" print("\n=== 测试 SentenceTransformer ===") # 设置 Hugging Face Spaces 环境 os.environ['SPACE_ID'] = 'test_space_789' try: from demo.path_utils import setup_hf_cache from sentence_transformers import SentenceTransformer cache_dir = setup_hf_cache() print(f"使用缓存目录: {cache_dir}") # 尝试初始化 SentenceTransformer print("正在初始化 SentenceTransformer...") model = SentenceTransformer( "nomic-ai/nomic-embed-text-v1", trust_remote_code=True, cache_folder=cache_dir ) print("✅ SentenceTransformer 初始化成功") # 测试简单的嵌入 test_text = "This is a test sentence." print("正在测试嵌入...") embedding = model.encode(test_text) print(f"✅ 嵌入测试成功,向量维度: {len(embedding)}") except Exception as e: print(f"❌ SentenceTransformer 初始化失败: {e}") import traceback traceback.print_exc() if __name__ == "__main__": print("开始测试 Hugging Face 缓存目录修复...") test_cache_setup() test_embedder_initialization() test_sentence_transformer() print("\n=== 测试完成 ===")