import os import re import json import subprocess from langchain_community.document_loaders import UnstructuredMarkdownLoader from langchain_core.documents import Document import shutil class DocumentLoading: def convert_pdf_to_md(self, pdf_file, output_dir="output", method="auto"): base_name = os.path.splitext(os.path.basename(pdf_file))[0] target_dir = os.path.join(output_dir, base_name) md_file_path = os.path.join(target_dir, method, f"{base_name}.md") print("The md file path is: ", md_file_path) if os.path.exists(md_file_path): print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True) return command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] try: subprocess.run(command, check=True) # 检查是否生成了 Markdown 文件 if not os.path.exists(md_file_path): print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...") shutil.rmtree(target_dir) # 删除生成的文件夹 else: print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") except subprocess.CalledProcessError as e: print(f"An error occurred during conversion: {e}") # 如果发生错误且文件夹已生成,则删除文件夹 if os.path.exists(target_dir): print(f"Cleaning up incomplete folder: {target_dir}") shutil.rmtree(target_dir) # new def convert_pdf_to_md_new(self, pdf_dir, output_dir="output", method="auto"): pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) for pdf_file in pdf_files: base_name = os.path.splitext(os.path.basename(pdf_file))[0] target_dir = os.path.join(output_dir, base_name) if os.path.exists(target_dir): print(f"Folder for {pdf_file} already exists in {output_dir}. Skipping conversion.") else: command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] try: subprocess.run(command, check=True) print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") def batch_convert_pdfs(pdf_files, output_dir="output", method="auto", max_workers=None): # Create a process pool to run the conversion in parallel with ProcessPoolExecutor(max_workers=max_workers) as executor: # Submit each PDF file to the process pool for conversion futures = [executor.submit(convert_pdf_to_md, pdf, output_dir, method) for pdf in pdf_files] # Optionally, you can monitor the status of each future as they complete for future in futures: try: future.result() # This will raise any exceptions that occurred during the processing except Exception as exc: print(f"An error occurred during processing: {exc}") def extract_information_from_md(self, md_text): title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) title = title_match.group(1).strip() if title_match else "N/A" authors_match = re.search( r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', md_text, re.DOTALL ) authors = authors_match.group(1).strip() if authors_match else "N/A" abstract_match = re.search( r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', md_text, re.DOTALL ) abstract = abstract_match.group(0).strip() if abstract_match else "N/A" abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) introduction_match = re.search( r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)' r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))', md_text, re.DOTALL ) introduction = introduction_match.group(2).strip() if introduction_match else "N/A" main_content_match = re.search( r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)', md_text, re.DOTALL ) if main_content_match: main_content = main_content_match.group(1).strip() else: main_content = "N/A" extracted_data = { "title": title, "authors": authors, "abstract": abstract, "introduction": introduction, "main_content": main_content } return extracted_data def process_md_file(self, md_file_path, survey_id): loader = UnstructuredMarkdownLoader(md_file_path) data = loader.load() assert len(data) == 1, "Expected exactly one document in the markdown file." assert isinstance(data[0], Document), "The loaded data is not of type Document." extracted_text = data[0].page_content extracted_data = self.extract_information_from_md(extracted_text) if len(extracted_data["abstract"]) < 10: extracted_data["abstract"] = extracted_data['title'] title = os.path.splitext(os.path.basename(md_file_path))[0] title_new = title.strip() invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] for char in invalid_chars: title_new = title_new.replace(char, ' ') os.makedirs(f'./src/static/data/txt/{survey_id}', exist_ok=True) with open(f'./src/static/data/txt/{survey_id}/{title_new}.json', 'w', encoding='utf-8') as f: json.dump(extracted_data, f, ensure_ascii=False, indent=4) return extracted_data['introduction'] def process_md_file_full(self, md_file_path, survey_id): loader = UnstructuredMarkdownLoader(md_file_path) data = loader.load() assert len(data) == 1, "Expected exactly one document in the markdown file." assert isinstance(data[0], Document), "The loaded data is not of type Document." extracted_text = data[0].page_content extracted_data = self.extract_information_from_md(extracted_text) if len(extracted_data["abstract"]) < 10: extracted_data["abstract"] = extracted_data['title'] title = os.path.splitext(os.path.basename(md_file_path))[0] title_new = title.strip() invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] for char in invalid_chars: title_new = title_new.replace(char, ' ') os.makedirs(f'./src/static/data/txt/{survey_id}', exist_ok=True) with open(f'./src/static/data/txt/{survey_id}/{title_new}.json', 'w', encoding='utf-8') as f: json.dump(extracted_data, f, ensure_ascii=False, indent=4) return extracted_data['abstract'] + extracted_data['introduction'] + extracted_data['main_content'] def load_pdf(self, pdf_file, survey_id, mode): os.makedirs(f'./src/static/data/md/{survey_id}', exist_ok=True) output_dir = f"./src/static/data/md/{survey_id}" base_name = os.path.splitext(os.path.basename(pdf_file))[0] target_dir = os.path.join(output_dir, base_name, "auto") # 1. Convert PDF to markdown if the folder doesn't exist self.convert_pdf_to_md(pdf_file, output_dir) # 2. Process the markdown file in the output directory md_file_path = os.path.join(target_dir, f"{base_name}.md") if not os.path.exists(md_file_path): raise FileNotFoundError(f"Markdown file {md_file_path} does not exist. Conversion might have failed.") if mode == "intro": return self.process_md_file(md_file_path, survey_id) elif mode == "full": return self.process_md_file_full(md_file_path, survey_id) # wrong, still being tested def load_pdf_new(self, pdf_dir, survey_id): os.makedirs(f'./src/static/data/md/{survey_id}', exist_ok=True) output_dir = f"./src/static/data/md/{survey_id}" self.convert_pdf_to_md_new(pdf_dir, output_dir) markdown_files = glob.glob(os.path.join(output_dir, "*", "auto", "*.md")) all_introductions = [] for md_file_path in markdown_files: try: introduction = self.process_md_file(md_file_path, survey_id) all_introductions.append(introduction) except FileNotFoundError as e: print(f"Markdown file {md_file_path} does not exist. Conversion might have failed.") return all_introductions def parallel_load_pdfs(self, pdf_files, survey_id, max_workers=4): with ProcessPoolExecutor(max_workers=max_workers) as executor: # Submit tasks for parallel execution futures = [executor.submit(self.load_pdf, pdf, survey_id) for pdf in pdf_files] # Collect results for future in futures: try: result = future.result() print(f"Processed result: {result}") except Exception as e: print(f"Error processing PDF: {e}") def ensure_non_empty_introduction(self, introduction, full_text): """ Ensure introduction is not empty. If empty, replace with full text. """ if introduction == "N/A" or len(introduction.strip()) < 50: return full_text.strip() return introduction def extract_information_from_md_new(self, md_text): # Title extraction title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) title = title_match.group(1).strip() if title_match else "N/A" # Authors extraction authors_match = re.search( r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', md_text, re.DOTALL ) authors = authors_match.group(1).strip() if authors_match else "N/A" # Abstract extraction abstract_match = re.search( r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', md_text, re.DOTALL ) abstract = abstract_match.group(0).strip() if abstract_match else "N/A" abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) # Introduction extraction introduction_match = re.search( r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)', md_text, re.DOTALL ) introduction = introduction_match.group(2).strip() if introduction_match else "N/A" # Ensure introduction is not empty introduction = self.ensure_non_empty_introduction(introduction, md_text) return { "title": title, "authors": authors, "abstract": abstract, "introduction": introduction }