Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
from torchvision.transforms import functional as F | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
# Load the pretrained DETR model | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
# Define the object detection function | |
def detect_objects(frame): | |
# Convert the frame to PIL image | |
image = Image.fromarray(frame) | |
# Preprocess the image | |
inputs = processor(images=image, return_tensors="pt") | |
# Perform object detection | |
outputs = model(**inputs) | |
# Convert outputs to COCO API format | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Draw bounding boxes on the frame | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
frame = gr.draw_box(frame, box, label=model.config.id2label[label.item()], color=(0, 255, 0)) | |
return frame | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Video(), | |
outputs="video", | |
live=True, | |
) | |
# Launch the Gradio app | |
iface.launch() | |