Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import torch | |
from torchvision import transforms | |
from PIL import Image | |
# Load the pre-trained object detection model (replace with your own model) | |
# For example, using a torchvision model for demonstration purposes | |
model = torch.hub.load('pytorch/vision:v0.10.0', 'fasterrcnn_resnet50_fpn', pretrained=True) | |
model.eval() | |
# Define the transformations for the input image | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
# Function to perform object detection on an image | |
def detect_objects(image): | |
# Convert image to tensor | |
input_tensor = transform(image).unsqueeze(0) | |
# Perform object detection | |
with torch.no_grad(): | |
predictions = model(input_tensor) | |
# Extract bounding boxes and labels from predictions | |
boxes = predictions[0]['boxes'].numpy() | |
labels = predictions[0]['labels'].numpy() | |
return boxes, labels | |
# Function for live object detection from the camera | |
def live_object_detection(): | |
# Open a connection to the camera (replace with your own camera setup) | |
cap = cv2.VideoCapture(0) | |
while True: | |
# Capture frame-by-frame | |
ret, frame = cap.read() | |
# Convert the frame to PIL Image | |
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
# Perform object detection | |
boxes, labels = detect_objects(frame_pil) | |
# Draw bounding boxes on the frame | |
for box, label in zip(boxes, labels): | |
box = [int(coord) for coord in box] | |
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) | |
cv2.putText(frame, f"Label: {label}", (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
# Display the resulting frame | |
cv2.imshow('Object Detection', frame) | |
# Break the loop when 'q' key is pressed | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
# Release the camera and close all windows | |
cap.release() | |
cv2.destroyAllWindows() | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=[detect_objects, live_object_detection], | |
inputs=[ | |
gr.Image(type="pil", label="Upload a photo for object detection"), | |
"webcam", | |
], | |
outputs="image", | |
live=True, | |
) | |
# Launch the Gradio interface | |
iface.launch() | |