Spaces:
Runtime error
Runtime error
Commit
·
69c84d2
1
Parent(s):
c81d277
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import cv2
|
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
|
| 6 |
|
| 7 |
# Load the pre-trained DETR model
|
| 8 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
|
@@ -33,33 +34,54 @@ def image_object_detection(image_pil):
|
|
| 33 |
return image_np
|
| 34 |
|
| 35 |
# Function for live object detection from the camera
|
| 36 |
-
def live_object_detection(
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
outputs = model(**inputs)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Define the Gradio interface
|
| 56 |
iface = gr.Interface(
|
| 57 |
fn=[image_object_detection, live_object_detection],
|
| 58 |
inputs=[
|
| 59 |
-
gr.Image(type="pil", label="Upload an image for object detection")
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
],
|
| 62 |
-
outputs=["image", "image"],
|
| 63 |
live=True,
|
| 64 |
)
|
| 65 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
# Load the pre-trained DETR model
|
| 9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
|
|
|
| 34 |
return image_np
|
| 35 |
|
| 36 |
# Function for live object detection from the camera
|
| 37 |
+
def live_object_detection():
|
| 38 |
+
# Open a connection to the camera (replace with your own camera setup)
|
| 39 |
+
cap = cv2.VideoCapture(0)
|
|
|
|
| 40 |
|
| 41 |
+
while True:
|
| 42 |
+
# Capture frame-by-frame
|
| 43 |
+
ret, frame = cap.read()
|
|
|
|
| 44 |
|
| 45 |
+
# Convert the frame to PIL Image
|
| 46 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 47 |
+
|
| 48 |
+
# Process the frame with the DETR model
|
| 49 |
+
inputs = processor(images=frame_pil, return_tensors="pt")
|
| 50 |
+
outputs = model(**inputs)
|
| 51 |
+
|
| 52 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
| 53 |
+
# let's only keep detections with score > 0.9
|
| 54 |
+
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
| 55 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 56 |
|
| 57 |
+
# Draw bounding boxes on the frame
|
| 58 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 59 |
+
box = [int(round(i)) for i in box.tolist()]
|
| 60 |
+
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
| 61 |
+
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}"
|
| 62 |
+
cv2.putText(frame, label_text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 63 |
+
|
| 64 |
+
# Display the resulting frame
|
| 65 |
+
cv2.imshow('Object Detection', frame)
|
| 66 |
+
|
| 67 |
+
# Break the loop when 'q' key is pressed
|
| 68 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 69 |
+
break
|
| 70 |
+
|
| 71 |
+
# Release the camera and close all windows
|
| 72 |
+
cap.release()
|
| 73 |
+
cv2.destroyAllWindows()
|
| 74 |
|
| 75 |
# Define the Gradio interface
|
| 76 |
iface = gr.Interface(
|
| 77 |
fn=[image_object_detection, live_object_detection],
|
| 78 |
inputs=[
|
| 79 |
+
gr.Image(type="pil", label="Upload an image for object detection") # Remove this line
|
| 80 |
+
],
|
| 81 |
+
outputs=[
|
| 82 |
+
"image",
|
| 83 |
+
"image",
|
| 84 |
],
|
|
|
|
| 85 |
live=True,
|
| 86 |
)
|
| 87 |
|