Spaces:
Runtime error
Runtime error
Commit
·
69c84d2
1
Parent(s):
c81d277
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import cv2
|
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
6 |
|
7 |
# Load the pre-trained DETR model
|
8 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
@@ -33,33 +34,54 @@ def image_object_detection(image_pil):
|
|
33 |
return image_np
|
34 |
|
35 |
# Function for live object detection from the camera
|
36 |
-
def live_object_detection(
|
37 |
-
#
|
38 |
-
|
39 |
-
outputs = model(**inputs)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# Define the Gradio interface
|
56 |
iface = gr.Interface(
|
57 |
fn=[image_object_detection, live_object_detection],
|
58 |
inputs=[
|
59 |
-
gr.Image(type="pil", label="Upload an image for object detection")
|
60 |
-
|
|
|
|
|
|
|
61 |
],
|
62 |
-
outputs=["image", "image"],
|
63 |
live=True,
|
64 |
)
|
65 |
|
|
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Load the pre-trained DETR model
|
9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
|
|
34 |
return image_np
|
35 |
|
36 |
# Function for live object detection from the camera
|
37 |
+
def live_object_detection():
|
38 |
+
# Open a connection to the camera (replace with your own camera setup)
|
39 |
+
cap = cv2.VideoCapture(0)
|
|
|
40 |
|
41 |
+
while True:
|
42 |
+
# Capture frame-by-frame
|
43 |
+
ret, frame = cap.read()
|
|
|
44 |
|
45 |
+
# Convert the frame to PIL Image
|
46 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
47 |
+
|
48 |
+
# Process the frame with the DETR model
|
49 |
+
inputs = processor(images=frame_pil, return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
|
52 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
53 |
+
# let's only keep detections with score > 0.9
|
54 |
+
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
55 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
56 |
|
57 |
+
# Draw bounding boxes on the frame
|
58 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
59 |
+
box = [int(round(i)) for i in box.tolist()]
|
60 |
+
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
61 |
+
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}"
|
62 |
+
cv2.putText(frame, label_text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
63 |
+
|
64 |
+
# Display the resulting frame
|
65 |
+
cv2.imshow('Object Detection', frame)
|
66 |
+
|
67 |
+
# Break the loop when 'q' key is pressed
|
68 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
69 |
+
break
|
70 |
+
|
71 |
+
# Release the camera and close all windows
|
72 |
+
cap.release()
|
73 |
+
cv2.destroyAllWindows()
|
74 |
|
75 |
# Define the Gradio interface
|
76 |
iface = gr.Interface(
|
77 |
fn=[image_object_detection, live_object_detection],
|
78 |
inputs=[
|
79 |
+
gr.Image(type="pil", label="Upload an image for object detection") # Remove this line
|
80 |
+
],
|
81 |
+
outputs=[
|
82 |
+
"image",
|
83 |
+
"image",
|
84 |
],
|
|
|
85 |
live=True,
|
86 |
)
|
87 |
|