Spaces:
Runtime error
Runtime error
Commit
·
6c68290
1
Parent(s):
f7b8ab6
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,14 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
from torchvision.transforms import functional as F
|
5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
|
|
6 |
|
7 |
# Load the pretrained DETR model
|
8 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
9 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
10 |
|
|
|
11 |
def detect_objects(frame):
|
12 |
# Convert the frame to PIL image
|
13 |
image = Image.fromarray(frame)
|
@@ -25,16 +28,17 @@ def detect_objects(frame):
|
|
25 |
# Draw bounding boxes on the frame
|
26 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
27 |
box = [round(i, 2) for i in box.tolist()]
|
28 |
-
frame =
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
return np.array(frame)
|
32 |
|
33 |
# Define the Gradio interface
|
34 |
iface = gr.Interface(
|
35 |
fn=detect_objects,
|
36 |
inputs=gr.Video(),
|
37 |
-
outputs="
|
38 |
live=True,
|
39 |
)
|
40 |
|
|
|
3 |
from PIL import Image
|
4 |
from torchvision.transforms import functional as F
|
5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
|
9 |
# Load the pretrained DETR model
|
10 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
11 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
12 |
|
13 |
+
# Define the object detection function
|
14 |
def detect_objects(frame):
|
15 |
# Convert the frame to PIL image
|
16 |
image = Image.fromarray(frame)
|
|
|
28 |
# Draw bounding boxes on the frame
|
29 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
30 |
box = [round(i, 2) for i in box.tolist()]
|
31 |
+
frame = cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
|
32 |
+
frame = cv2.putText(frame, f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}',
|
33 |
+
(int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
|
34 |
|
35 |
+
return frame
|
|
|
36 |
|
37 |
# Define the Gradio interface
|
38 |
iface = gr.Interface(
|
39 |
fn=detect_objects,
|
40 |
inputs=gr.Video(),
|
41 |
+
outputs="numpy_image",
|
42 |
live=True,
|
43 |
)
|
44 |
|