Spaces:
Runtime error
Runtime error
Commit
·
ac00638
1
Parent(s):
b8d66f1
Update app.py
Browse files
app.py
CHANGED
@@ -10,48 +10,32 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revisi
|
|
10 |
model.eval()
|
11 |
|
12 |
# Function for live object detection from the camera
|
13 |
-
def live_object_detection():
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
# let's only keep detections with score > 0.9
|
30 |
-
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
31 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
32 |
-
|
33 |
-
# Draw bounding boxes on the frame
|
34 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
35 |
-
box = [int(round(i)) for i in box.tolist()]
|
36 |
-
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
37 |
-
cv2.putText(frame, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
|
38 |
-
(box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
39 |
-
|
40 |
-
# Display the resulting frame
|
41 |
-
cv2.imshow('Object Detection', frame)
|
42 |
-
|
43 |
-
# Break the loop when 'q' key is pressed
|
44 |
-
if cv2.waitKey(1) & 0xFF == ord('q'):
|
45 |
-
break
|
46 |
-
|
47 |
-
# Release the camera and close all windows
|
48 |
-
cap.release()
|
49 |
-
cv2.destroyAllWindows()
|
50 |
|
51 |
# Define the Gradio interface
|
52 |
iface = gr.Interface(
|
53 |
fn=live_object_detection,
|
54 |
-
inputs="
|
55 |
outputs="image",
|
56 |
live=True,
|
57 |
)
|
|
|
10 |
model.eval()
|
11 |
|
12 |
# Function for live object detection from the camera
|
13 |
+
def live_object_detection(image_pil):
|
14 |
+
# Convert the frame to PIL Image
|
15 |
+
frame_pil = Image.fromarray(cv2.cvtColor(image_pil, cv2.COLOR_BGR2RGB))
|
16 |
|
17 |
+
# Process the frame with the DETR model
|
18 |
+
inputs = processor(images=frame_pil, return_tensors="pt")
|
19 |
+
outputs = model(**inputs)
|
20 |
|
21 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
22 |
+
# let's only keep detections with score > 0.9
|
23 |
+
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
24 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
25 |
|
26 |
+
# Draw bounding boxes on the frame
|
27 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
28 |
+
box = [int(round(i)) for i in box.tolist()]
|
29 |
+
cv2.rectangle(image_pil, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
30 |
+
cv2.putText(image_pil, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
|
31 |
+
(box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
32 |
|
33 |
+
return image_pil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Define the Gradio interface
|
36 |
iface = gr.Interface(
|
37 |
fn=live_object_detection,
|
38 |
+
inputs="image",
|
39 |
outputs="image",
|
40 |
live=True,
|
41 |
)
|