techysanoj commited on
Commit
ac00638
·
1 Parent(s): b8d66f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -34
app.py CHANGED
@@ -10,48 +10,32 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revisi
10
  model.eval()
11
 
12
  # Function for live object detection from the camera
13
- def live_object_detection():
14
- # Open a connection to the camera (replace with your own camera setup)
15
- cap = cv2.VideoCapture(0)
16
 
17
- while True:
18
- # Capture frame-by-frame
19
- ret, frame = cap.read()
20
 
21
- # Convert the frame to PIL Image
22
- frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
 
 
23
 
24
- # Process the frame with the DETR model
25
- inputs = processor(images=frame_pil, return_tensors="pt")
26
- outputs = model(**inputs)
 
 
 
27
 
28
- # convert outputs (bounding boxes and class logits) to COCO API
29
- # let's only keep detections with score > 0.9
30
- target_sizes = torch.tensor([frame_pil.size[::-1]])
31
- results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
32
-
33
- # Draw bounding boxes on the frame
34
- for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
35
- box = [int(round(i)) for i in box.tolist()]
36
- cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
37
- cv2.putText(frame, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
38
- (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
39
-
40
- # Display the resulting frame
41
- cv2.imshow('Object Detection', frame)
42
-
43
- # Break the loop when 'q' key is pressed
44
- if cv2.waitKey(1) & 0xFF == ord('q'):
45
- break
46
-
47
- # Release the camera and close all windows
48
- cap.release()
49
- cv2.destroyAllWindows()
50
 
51
  # Define the Gradio interface
52
  iface = gr.Interface(
53
  fn=live_object_detection,
54
- inputs="webcam",
55
  outputs="image",
56
  live=True,
57
  )
 
10
  model.eval()
11
 
12
  # Function for live object detection from the camera
13
+ def live_object_detection(image_pil):
14
+ # Convert the frame to PIL Image
15
+ frame_pil = Image.fromarray(cv2.cvtColor(image_pil, cv2.COLOR_BGR2RGB))
16
 
17
+ # Process the frame with the DETR model
18
+ inputs = processor(images=frame_pil, return_tensors="pt")
19
+ outputs = model(**inputs)
20
 
21
+ # convert outputs (bounding boxes and class logits) to COCO API
22
+ # let's only keep detections with score > 0.9
23
+ target_sizes = torch.tensor([frame_pil.size[::-1]])
24
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
25
 
26
+ # Draw bounding boxes on the frame
27
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
28
+ box = [int(round(i)) for i in box.tolist()]
29
+ cv2.rectangle(image_pil, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
30
+ cv2.putText(image_pil, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
31
+ (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
32
 
33
+ return image_pil
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  # Define the Gradio interface
36
  iface = gr.Interface(
37
  fn=live_object_detection,
38
+ inputs="image",
39
  outputs="image",
40
  live=True,
41
  )