Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LogisticRegression | |
from sklearn import metrics | |
from reader import get_article | |
### ------------------------------ ### | |
### data transformation ### | |
### ------------------------------ ### | |
# options constants | |
options = [ | |
['Very Poorly Aligned', 'Poorly Aligned', 'Neutrally Aligned', 'Well Aligned', 'Very Well Aligned'], | |
['Very Limited Experience', 'Limited Experience', 'Neutral Experience', 'Extensive Experience', 'Very Extensive Experience'], | |
['Extremely Unattractive', 'Moderately Unattractive', 'Neutrally Attractive', 'Moderately Attractive', 'Extremely Attractive'], | |
['Very Unfavorable', 'Moderately Unfavorable', 'Neutrally Favorable', 'Moderately Favorable', 'Very Favorable'], | |
['Very Poor Fit', 'Poor Fit', 'Neutral Fit', 'Moderately Good Fit', 'Excellent Fit'] | |
] | |
# load dataset | |
uncleaned_data = pd.read_csv('data.csv') | |
data = pd.DataFrame() | |
# keep track of which columns are categorical and what | |
# those columns' value mappings are | |
# structure: {colname1: {...}, colname2: {...} } | |
cat_value_dicts = {} | |
col = 0 | |
final_colname = uncleaned_data.columns[4] | |
# for each column... | |
for (colname, colval) in uncleaned_data.iteritems(): | |
# structure: {0: "lilac", 1: "blue", ...} | |
new_dict = {} | |
transformed_col_vals = [] # new numeric datapoints | |
# if not, for each item in that column... | |
for (row, item) in enumerate(colval.values): | |
# if item is not in this col's dict... | |
if item not in new_dict: | |
new_dict[item] = options[col].index(item) | |
# then add numerical value to transformed dataframe | |
transformed_col_vals.append(new_dict[item]) | |
# reverse dictionary only for final col (0, 1) => (vals) | |
if colname == final_colname: | |
new_dict = {value : key for (key, value) in new_dict.items()} | |
cat_value_dicts[colname] = new_dict | |
data[colname] = transformed_col_vals | |
col += 1 | |
### -------------------------------- ### | |
### model training ### | |
### -------------------------------- ### | |
# select features and predicton; automatically selects last column as prediction | |
num_features = 4 | |
x = data.iloc[: , :num_features] | |
y = data.iloc[: , num_features:] | |
# split data into training and testing sets | |
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) | |
# instantiate the model (using default parameters) | |
model = LogisticRegression(max_iter=100) | |
model.fit(x_train, y_train.values.ravel()) | |
y_pred = model.predict(x_test) | |
### -------------------------------- ### | |
### article generation ### | |
### -------------------------------- ### | |
# borrow file reading function from reader.py | |
def get_feat(): | |
feats = [abs(x) for x in model.coef_[0]] | |
max_val = max(feats) | |
idx = feats.index(max_val) | |
return data.columns[idx] | |
acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 2)) + '%' | |
feat = get_feat() | |
info = get_article(acc, feat) | |
### ------------------------------- ### | |
### interface creation ### | |
### ------------------------------- ### | |
def predictor(*args): | |
features = [] | |
# transform categorical input | |
for num, col in enumerate(args): | |
features.append(cat_value_dicts[data.columns[num]][col]) | |
# predict single datapoint | |
new_input = [features] | |
result = model.predict(new_input) | |
return cat_value_dicts[final_colname][result[0]] | |
# add data labels to replace those lost via star-args | |
inputls = [] | |
labels = [ | |
"How Well Do They Align with RS21's 9 Core Values?", | |
"How Experienced Are They in RS21's Markets?", | |
"How Attractive is Their Valuation of RS21?", | |
"How Favorable is Their Proposed Deal Structure for RS21?" | |
] | |
for num, colname in enumerate(labels): | |
# access categories dict if data is categorical | |
inputls.append(gr.inputs.Radio(choices=options[num], type="value", label=labels[num])) | |
# generate gradio interface | |
interface = gr.Interface(predictor, inputs=inputls, outputs="text", article=info['article'], css=info['css'], theme="grass", title=info['title'], allow_flagging='never', description=info['description']) | |
# show the interface | |
interface.launch() |