Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
from sklearn import metrics
|
6 |
+
from reader import get_article
|
7 |
+
|
8 |
+
|
9 |
+
### ------------------------------ ###
|
10 |
+
### data transformation ###
|
11 |
+
### ------------------------------ ###
|
12 |
+
# options constants
|
13 |
+
options = [
|
14 |
+
['Very Poorly Aligned', 'Poorly Aligned', 'Neutrally Aligned', 'Well Aligned', 'Very Well Aligned'],
|
15 |
+
['Very Limited Experience', 'Limited Experience', 'Neutral Experience', 'Extensive Experience', 'Very Extensive Experience'],
|
16 |
+
['Extremely Unattractive', 'Moderately Unattractive', 'Neutrally Attractive', 'Moderately Attractive', 'Extremely Attractive'],
|
17 |
+
['Very Unfavorable', 'Moderately Unfavorable', 'Neutrally Favorable', 'Moderately Favorable', 'Very Favorable'],
|
18 |
+
['Very Poor Fit', 'Poor Fit', 'Neutral Fit', 'Moderately Good Fit', 'Excellent Fit']
|
19 |
+
]
|
20 |
+
|
21 |
+
# load dataset
|
22 |
+
uncleaned_data = pd.read_csv('data.csv')
|
23 |
+
data = pd.DataFrame()
|
24 |
+
|
25 |
+
# keep track of which columns are categorical and what
|
26 |
+
# those columns' value mappings are
|
27 |
+
# structure: {colname1: {...}, colname2: {...} }
|
28 |
+
cat_value_dicts = {}
|
29 |
+
col = 0
|
30 |
+
final_colname = uncleaned_data.columns[4]
|
31 |
+
|
32 |
+
# for each column...
|
33 |
+
for (colname, colval) in uncleaned_data.iteritems():
|
34 |
+
|
35 |
+
# structure: {0: "lilac", 1: "blue", ...}
|
36 |
+
new_dict = {}
|
37 |
+
transformed_col_vals = [] # new numeric datapoints
|
38 |
+
|
39 |
+
# if not, for each item in that column...
|
40 |
+
for (row, item) in enumerate(colval.values):
|
41 |
+
|
42 |
+
# if item is not in this col's dict...
|
43 |
+
if item not in new_dict:
|
44 |
+
new_dict[item] = options[col].index(item)
|
45 |
+
|
46 |
+
# then add numerical value to transformed dataframe
|
47 |
+
transformed_col_vals.append(new_dict[item])
|
48 |
+
|
49 |
+
# reverse dictionary only for final col (0, 1) => (vals)
|
50 |
+
if colname == final_colname:
|
51 |
+
new_dict = {value : key for (key, value) in new_dict.items()}
|
52 |
+
|
53 |
+
cat_value_dicts[colname] = new_dict
|
54 |
+
data[colname] = transformed_col_vals
|
55 |
+
col += 1
|
56 |
+
|
57 |
+
|
58 |
+
### -------------------------------- ###
|
59 |
+
### model training ###
|
60 |
+
### -------------------------------- ###
|
61 |
+
|
62 |
+
# select features and predicton; automatically selects last column as prediction
|
63 |
+
num_features = 4
|
64 |
+
x = data.iloc[: , :num_features]
|
65 |
+
y = data.iloc[: , num_features:]
|
66 |
+
|
67 |
+
# split data into training and testing sets
|
68 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
|
69 |
+
|
70 |
+
# instantiate the model (using default parameters)
|
71 |
+
model = LogisticRegression(max_iter=100)
|
72 |
+
model.fit(x_train, y_train.values.ravel())
|
73 |
+
y_pred = model.predict(x_test)
|
74 |
+
|
75 |
+
|
76 |
+
### -------------------------------- ###
|
77 |
+
### article generation ###
|
78 |
+
### -------------------------------- ###
|
79 |
+
# borrow file reading function from reader.py
|
80 |
+
|
81 |
+
def get_feats():
|
82 |
+
feats = [abs(x) for x in model.coef_[0]]
|
83 |
+
feats, cols = zip(*sorted(zip(feats, data.columns)))
|
84 |
+
|
85 |
+
output = []
|
86 |
+
|
87 |
+
for idx, col in enumerate(reversed(cols)):
|
88 |
+
output.append(col)
|
89 |
+
|
90 |
+
# max_val = max(feats)
|
91 |
+
# idx = feats.index(max_val)
|
92 |
+
# return data.columns[idx]
|
93 |
+
return output
|
94 |
+
|
95 |
+
acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 2)) + '%'
|
96 |
+
feats = get_feats()
|
97 |
+
info = get_article(acc, feats)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
### ------------------------------- ###
|
102 |
+
### interface creation ###
|
103 |
+
### ------------------------------- ###
|
104 |
+
|
105 |
+
def predictor(*args):
|
106 |
+
features = []
|
107 |
+
|
108 |
+
# transform categorical input
|
109 |
+
for num, col in enumerate(args):
|
110 |
+
features.append(cat_value_dicts[data.columns[num]][col])
|
111 |
+
|
112 |
+
# predict single datapoint
|
113 |
+
new_input = [features]
|
114 |
+
result = model.predict(new_input)
|
115 |
+
return cat_value_dicts[final_colname][result[0]]
|
116 |
+
|
117 |
+
# add data labels to replace those lost via star-args
|
118 |
+
inputls = []
|
119 |
+
labels = [
|
120 |
+
"How Well Do They Align with RS21's 9 Core Values?",
|
121 |
+
"How Experienced Are They in RS21's Markets?",
|
122 |
+
"How Attractive is Their Valuation of RS21?",
|
123 |
+
"How Favorable is Their Proposed Deal Structure for RS21?"
|
124 |
+
]
|
125 |
+
|
126 |
+
for num, colname in enumerate(labels):
|
127 |
+
|
128 |
+
# access categories dict if data is categorical
|
129 |
+
inputls.append(gr.inputs.Radio(choices=options[num], type="value", label=labels[num]))
|
130 |
+
|
131 |
+
|
132 |
+
# generate gradio interface
|
133 |
+
interface = gr.Interface(predictor, inputs=inputls, outputs="text", article=info['article'], css=info['css'], theme="grass", title=info['title'], allow_flagging='never', description=info['description'])
|
134 |
+
|
135 |
+
# show the interface
|
136 |
+
interface.launch()
|