import gradio as gr import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics from reader import get_article ### ------------------------------ ### ### data transformation ### ### ------------------------------ ### # options constants options = [ ['Very Poorly Aligned', 'Poorly Aligned', 'Neutrally Aligned', 'Well Aligned', 'Very Well Aligned'], ['Very Limited Experience', 'Limited Experience', 'Neutral Experience', 'Extensive Experience', 'Very Extensive Experience'], ['Extremely Unattractive', 'Moderately Unattractive', 'Neutrally Attractive', 'Moderately Attractive', 'Extremely Attractive'], ['Very Unfavorable', 'Moderately Unfavorable', 'Neutrally Favorable', 'Moderately Favorable', 'Very Favorable'], ['Very Poor Fit', 'Poor Fit', 'Neutral Fit', 'Moderately Good Fit', 'Excellent Fit'] ] # load dataset uncleaned_data = pd.read_csv('data.csv') data = pd.DataFrame() # keep track of which columns are categorical and what # those columns' value mappings are # structure: {colname1: {...}, colname2: {...} } cat_value_dicts = {} col = 0 final_colname = uncleaned_data.columns[4] # for each column... for (colname, colval) in uncleaned_data.iteritems(): # structure: {0: "lilac", 1: "blue", ...} new_dict = {} transformed_col_vals = [] # new numeric datapoints # if not, for each item in that column... for (row, item) in enumerate(colval.values): # if item is not in this col's dict... if item not in new_dict: new_dict[item] = options[col].index(item) # then add numerical value to transformed dataframe transformed_col_vals.append(new_dict[item]) # reverse dictionary only for final col (0, 1) => (vals) if colname == final_colname: new_dict = {value : key for (key, value) in new_dict.items()} cat_value_dicts[colname] = new_dict data[colname] = transformed_col_vals col += 1 ### -------------------------------- ### ### model training ### ### -------------------------------- ### # select features and predicton; automatically selects last column as prediction num_features = 4 x = data.iloc[: , :num_features] y = data.iloc[: , num_features:] # split data into training and testing sets x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # instantiate the model (using default parameters) model = LogisticRegression(max_iter=100) model.fit(x_train, y_train.values.ravel()) y_pred = model.predict(x_test) ### -------------------------------- ### ### article generation ### ### -------------------------------- ### # borrow file reading function from reader.py def get_feats(): feats = [abs(x) for x in model.coef_[0]] feats, cols = zip(*sorted(zip(feats, data.columns))) output = [] for idx, col in enumerate(reversed(cols)): output.append(col) # max_val = max(feats) # idx = feats.index(max_val) # return data.columns[idx] return output acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 2)) + '%' feats = get_feats() info = get_article(acc, feats) ### ------------------------------- ### ### interface creation ### ### ------------------------------- ### def predictor(*args): features = [] # transform categorical input for num, col in enumerate(args): features.append(cat_value_dicts[data.columns[num]][col]) # predict single datapoint new_input = [features] result = model.predict(new_input) return cat_value_dicts[final_colname][result[0]] # add data labels to replace those lost via star-args inputls = [] labels = [ "How Well Do They Align with RS21's 9 Core Values?", "How Experienced Are They in RS21's Markets?", "How Attractive is Their Valuation of RS21?", "How Favorable is Their Proposed Deal Structure for RS21?" ] for num, colname in enumerate(labels): # access categories dict if data is categorical inputls.append(gr.inputs.Radio(choices=options[num], type="value", label=labels[num])) # generate gradio interface interface = gr.Interface(predictor, inputs=inputls, outputs="text", article=info['article'], css=info['css'], theme="grass", title=info['title'], allow_flagging='never', description=info['description']) # show the interface interface.launch()