Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -99,15 +99,6 @@ def apply_limiter(audio, limit_dB=-1):
|
|
99 |
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
|
100 |
return limiter.apply_gain(limit_dB)
|
101 |
|
102 |
-
def apply_phaser(audio):
|
103 |
-
return audio._spawn(audio.raw_data, overrides={"frame_rate": int(audio.frame_rate * 1.1)})
|
104 |
-
|
105 |
-
def apply_bitcrush(audio, bit_depth=8):
|
106 |
-
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
107 |
-
max_val = np.iinfo(np.int16).max
|
108 |
-
crushed = ((samples / max_val) * (2 ** bit_depth)).astype(np.int16)
|
109 |
-
return array_to_audiosegment(crushed, audio.frame_rate, channels=audio.channels)
|
110 |
-
|
111 |
def apply_auto_gain(audio, target_dB=-20):
|
112 |
change = target_dB - audio.dBFS
|
113 |
return audio.apply_gain(change)
|
@@ -158,67 +149,46 @@ def auto_eq(audio, genre="Pop"):
|
|
158 |
|
159 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
160 |
|
161 |
-
# ===
|
162 |
-
def
|
163 |
-
|
164 |
-
|
165 |
-
semitones = 0 # Placeholder
|
166 |
-
return apply_pitch_shift(audio, semitones)
|
167 |
-
|
168 |
-
def vocal_doubling(audio):
|
169 |
-
double1 = apply_pitch_shift(audio, 0.3)
|
170 |
-
double2 = apply_pitch_shift(audio, -0.3)
|
171 |
-
return audio.overlay(double1).overlay(double2)
|
172 |
-
|
173 |
-
# === Prompt-Based Editing ===
|
174 |
-
def process_prompt(audio_path, prompt):
|
175 |
-
prompt = prompt.lower()
|
176 |
-
audio = AudioSegment.from_file(audio_path)
|
177 |
-
|
178 |
-
if "noise" in prompt or "clean" in prompt:
|
179 |
-
audio = apply_noise_reduction(audio)
|
180 |
-
|
181 |
-
if "normalize" in prompt or "loud" in prompt:
|
182 |
-
audio = apply_normalize(audio)
|
183 |
-
|
184 |
-
if "bass" in prompt and ("boost" in prompt or "up" in prompt):
|
185 |
-
audio = apply_bass_boost(audio)
|
186 |
|
187 |
-
|
188 |
-
|
|
|
189 |
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
-
|
194 |
-
|
|
|
195 |
|
196 |
-
|
197 |
-
audio = vocal_doubling(audio)
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
audio.export(out_path, format="wav")
|
201 |
return out_path
|
202 |
|
203 |
-
# === Spectrum Analyzer + EQ Visualizer ===
|
204 |
-
def visualize_spectrum(audio_path):
|
205 |
-
y, sr = torchaudio.load(audio_path)
|
206 |
-
y_np = y.numpy().flatten()
|
207 |
-
|
208 |
-
stft = librosa.stft(y_np)
|
209 |
-
db = librosa.amplitude_to_db(abs(stft))
|
210 |
-
|
211 |
-
plt.figure(figsize=(10, 4))
|
212 |
-
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
|
213 |
-
plt.colorbar(img, format="%+2.0f dB")
|
214 |
-
plt.title("Frequency Spectrum")
|
215 |
-
plt.tight_layout()
|
216 |
-
buf = BytesIO()
|
217 |
-
plt.savefig(buf, format="png")
|
218 |
-
plt.close()
|
219 |
-
buf.seek(0)
|
220 |
-
return Image.open(buf)
|
221 |
-
|
222 |
# === Vocal Isolation Helpers ===
|
223 |
def load_track_local(path, sample_rate, channels=2):
|
224 |
sig, rate = torchaudio.load(path)
|
@@ -433,7 +403,7 @@ def transcribe_audio(audio_path):
|
|
433 |
# === TTS Tab ===
|
434 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
435 |
|
436 |
-
def
|
437 |
out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav")
|
438 |
tts.tts_to_file(text=text, file_path=out_path)
|
439 |
return out_path
|
@@ -527,6 +497,28 @@ def diarize_and_transcribe(audio_path):
|
|
527 |
except Exception as e:
|
528 |
return f"β οΈ Diarization failed: {str(e)}"
|
529 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
# === UI ===
|
531 |
effect_options = [
|
532 |
"Noise Reduction",
|
@@ -619,16 +611,41 @@ with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
|
|
619 |
# --- Genre Mastering Tab ===
|
620 |
with gr.Tab("π§ Genre Mastering"):
|
621 |
gr.Interface(
|
622 |
-
fn=lambda audio, genre:
|
623 |
inputs=[
|
624 |
gr.Audio(label="Upload Track", type="filepath"),
|
625 |
-
gr.Dropdown(choices=list(
|
626 |
],
|
627 |
outputs=gr.Audio(label="Mastered Output", type="filepath"),
|
628 |
title="Genre-Specific Mastering",
|
629 |
description="Apply professionally tuned mastering settings for popular music genres."
|
630 |
)
|
631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
632 |
# --- Prompt-Based Editing Tab ===
|
633 |
with gr.Tab("π§ Prompt-Based Editing"):
|
634 |
gr.Interface(
|
@@ -643,14 +660,37 @@ with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
|
|
643 |
allow_flagging="never"
|
644 |
)
|
645 |
|
646 |
-
# ---
|
647 |
-
with gr.Tab("
|
648 |
gr.Interface(
|
649 |
-
fn=
|
650 |
-
inputs=
|
651 |
-
|
652 |
-
|
653 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
allow_flagging="never"
|
655 |
)
|
656 |
|
@@ -668,7 +708,7 @@ with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
|
|
668 |
description="Clone voice from source to target speaker using AI"
|
669 |
)
|
670 |
|
671 |
-
# --- Speaker Diarization (Who Spoke When?) ===
|
672 |
if diarize_pipeline:
|
673 |
with gr.Tab("π§ββοΈ Who Spoke When?"):
|
674 |
gr.Interface(
|
@@ -738,4 +778,109 @@ with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
|
|
738 |
description="Detect and trim silence at start/end or between words"
|
739 |
)
|
740 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
demo.launch()
|
|
|
99 |
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
|
100 |
return limiter.apply_gain(limit_dB)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def apply_auto_gain(audio, target_dB=-20):
|
103 |
change = target_dB - audio.dBFS
|
104 |
return audio.apply_gain(change)
|
|
|
149 |
|
150 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
151 |
|
152 |
+
# === Real-Time EQ Sliders ===
|
153 |
+
def real_time_eq(audio, low_gain=0, mid_gain=0, high_gain=0):
|
154 |
+
samples, sr = audiosegment_to_array(audio)
|
155 |
+
samples = samples.astype(np.float64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# Low EQ: 20β500Hz
|
158 |
+
sos_low = butter(10, [20, 500], btype='band', output='sos', fs=sr)
|
159 |
+
samples = sosfilt(sos_low, samples) * (10 ** (low_gain / 20))
|
160 |
|
161 |
+
# Mid EQ: 500β4000Hz
|
162 |
+
sos_mid = butter(10, [500, 4000], btype='band', output='sos', fs=sr)
|
163 |
+
samples += sosfilt(sos_mid, samples) * (10 ** (mid_gain / 20))
|
164 |
|
165 |
+
# High EQ: 4000β20000Hz
|
166 |
+
sos_high = butter(10, [4000, 20000], btype='high', output='sos', fs=sr)
|
167 |
+
samples += sosfilt(sos_high, samples) * (10 ** (high_gain / 20))
|
168 |
|
169 |
+
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
|
|
170 |
|
171 |
+
# === AI Suggest Presets Based on Genre ===
|
172 |
+
genre_preset_map = {
|
173 |
+
"Speech": ["Clean Podcast", "Normalize"],
|
174 |
+
"Pop": ["Vocal Clarity", "Limiter", "Stereo Expansion"],
|
175 |
+
"EDM": ["Heavy Bass", "Stereo Expansion", "Limiter", "Phaser"],
|
176 |
+
"Rock": ["Distortion", "Punchy Mids", "Reverb"],
|
177 |
+
"Hip-Hop": ["Deep Bass", "Vocal Presence", "Saturation"]
|
178 |
+
}
|
179 |
+
|
180 |
+
def suggest_preset_by_genre(genre):
|
181 |
+
return genre_preset_map.get(genre, ["Default"])
|
182 |
+
|
183 |
+
# === Create Karaoke Video from Audio + Lyrics ===
|
184 |
+
def create_karaoke_video(audio_path, lyrics, bg_image=None):
|
185 |
+
# Placeholder for video generation
|
186 |
+
print(f"Creating karaoke video with lyrics: {lyrics}")
|
187 |
+
out_path = os.path.join(tempfile.gettempdir(), "karaoke_output.wav")
|
188 |
+
audio = AudioSegment.from_file(audio_path)
|
189 |
audio.export(out_path, format="wav")
|
190 |
return out_path
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
# === Vocal Isolation Helpers ===
|
193 |
def load_track_local(path, sample_rate, channels=2):
|
194 |
sig, rate = torchaudio.load(path)
|
|
|
403 |
# === TTS Tab ===
|
404 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
405 |
|
406 |
+
def generate_tts(text):
|
407 |
out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav")
|
408 |
tts.tts_to_file(text=text, file_path=out_path)
|
409 |
return out_path
|
|
|
497 |
except Exception as e:
|
498 |
return f"β οΈ Diarization failed: {str(e)}"
|
499 |
|
500 |
+
# === Real-Time Spectrum Analyzer + EQ Visualizer ===
|
501 |
+
def visualize_spectrum(audio_path):
|
502 |
+
y, sr = torchaudio.load(audio_path)
|
503 |
+
y_np = y.numpy().flatten()
|
504 |
+
stft = librosa.stft(y_np)
|
505 |
+
db = librosa.amplitude_to_db(abs(stft))
|
506 |
+
|
507 |
+
plt.figure(figsize=(10, 4))
|
508 |
+
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
|
509 |
+
plt.colorbar(img, format="%+2.0f dB")
|
510 |
+
plt.title("Frequency Spectrum")
|
511 |
+
plt.tight_layout()
|
512 |
+
buf = BytesIO()
|
513 |
+
plt.savefig(buf, format="png")
|
514 |
+
plt.close()
|
515 |
+
buf.seek(0)
|
516 |
+
return Image.open(buf)
|
517 |
+
|
518 |
+
# === Real-Time EQ Sliders ===
|
519 |
+
def real_time_eq_slider(audio, low_gain, mid_gain, high_gain):
|
520 |
+
return real_time_eq(audio, low_gain, mid_gain, high_gain)
|
521 |
+
|
522 |
# === UI ===
|
523 |
effect_options = [
|
524 |
"Noise Reduction",
|
|
|
611 |
# --- Genre Mastering Tab ===
|
612 |
with gr.Tab("π§ Genre Mastering"):
|
613 |
gr.Interface(
|
614 |
+
fn=lambda audio, genre: auto_eq(audio, genre),
|
615 |
inputs=[
|
616 |
gr.Audio(label="Upload Track", type="filepath"),
|
617 |
+
gr.Dropdown(choices=list(genre_preset_map.keys()), label="Select Genre", value="Pop")
|
618 |
],
|
619 |
outputs=gr.Audio(label="Mastered Output", type="filepath"),
|
620 |
title="Genre-Specific Mastering",
|
621 |
description="Apply professionally tuned mastering settings for popular music genres."
|
622 |
)
|
623 |
|
624 |
+
# --- Real-Time EQ ===
|
625 |
+
with gr.Tab("π Real-Time EQ"):
|
626 |
+
gr.Interface(
|
627 |
+
fn=real_time_eq_slider,
|
628 |
+
inputs=[
|
629 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
630 |
+
gr.Slider(minimum=-12, maximum=12, value=0, label="Low Gain (-200β500Hz)"),
|
631 |
+
gr.Slider(minimum=-12, maximum=12, value=0, label="Mid Gain (500Hzβ4kHz)"),
|
632 |
+
gr.Slider(minimum=-12, maximum=12, value=0, label="High Gain (4kHz+)"),
|
633 |
+
],
|
634 |
+
outputs=gr.Audio(label="EQ'd Output", type="filepath"),
|
635 |
+
title="Adjust Frequency Bands Live",
|
636 |
+
description="Fine-tune your sound using real-time sliders for low, mid, and high frequencies."
|
637 |
+
)
|
638 |
+
|
639 |
+
# --- Spectrum Visualizer ===
|
640 |
+
with gr.Tab("π Frequency Spectrum"):
|
641 |
+
gr.Interface(
|
642 |
+
fn=visualize_spectrum,
|
643 |
+
inputs=gr.Audio(label="Upload Track", type="filepath"),
|
644 |
+
outputs=gr.Image(label="Spectrum Analysis"),
|
645 |
+
title="Real-Time Spectrum Analyzer",
|
646 |
+
description="See the frequency breakdown of your audio"
|
647 |
+
)
|
648 |
+
|
649 |
# --- Prompt-Based Editing Tab ===
|
650 |
with gr.Tab("π§ Prompt-Based Editing"):
|
651 |
gr.Interface(
|
|
|
660 |
allow_flagging="never"
|
661 |
)
|
662 |
|
663 |
+
# --- Vocal Presets for Singers ===
|
664 |
+
with gr.Tab("π€ Vocal Presets for Singers"):
|
665 |
gr.Interface(
|
666 |
+
fn=process_audio,
|
667 |
+
inputs=[
|
668 |
+
gr.Audio(label="Upload Vocal Track", type="filepath"),
|
669 |
+
gr.CheckboxGroup(choices=[
|
670 |
+
"Noise Reduction",
|
671 |
+
"Normalize",
|
672 |
+
"Compress Dynamic Range",
|
673 |
+
"Bass Boost",
|
674 |
+
"Treble Boost",
|
675 |
+
"Reverb",
|
676 |
+
"Auto Gain",
|
677 |
+
"Vocal Distortion",
|
678 |
+
"Harmony",
|
679 |
+
"Stage Mode"
|
680 |
+
]),
|
681 |
+
gr.Checkbox(label="Isolate Vocals After Effects"),
|
682 |
+
gr.Dropdown(choices=preset_names, label="Select Vocal Preset", value=preset_names[0]),
|
683 |
+
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
684 |
+
],
|
685 |
+
outputs=[
|
686 |
+
gr.Audio(label="Processed Vocal", type="filepath"),
|
687 |
+
gr.Image(label="Waveform Preview"),
|
688 |
+
gr.Textbox(label="Session Log (JSON)", lines=5),
|
689 |
+
gr.Textbox(label="Detected Genre", lines=1),
|
690 |
+
gr.Textbox(label="Status", value="β
Ready", lines=1)
|
691 |
+
],
|
692 |
+
title="Create Studio-Quality Vocal Tracks",
|
693 |
+
description="Apply singer-friendly presets and effects to enhance vocals.",
|
694 |
allow_flagging="never"
|
695 |
)
|
696 |
|
|
|
708 |
description="Clone voice from source to target speaker using AI"
|
709 |
)
|
710 |
|
711 |
+
# --- Speaker Diarization ("Who Spoke When?") ===
|
712 |
if diarize_pipeline:
|
713 |
with gr.Tab("π§ββοΈ Who Spoke When?"):
|
714 |
gr.Interface(
|
|
|
778 |
description="Detect and trim silence at start/end or between words"
|
779 |
)
|
780 |
|
781 |
+
# --- Save/Load Project File (.aiproj) ===
|
782 |
+
with gr.Tab("π Save/Load Project"):
|
783 |
+
gr.Interface(
|
784 |
+
fn=save_project,
|
785 |
+
inputs=[
|
786 |
+
gr.File(label="Original Audio"),
|
787 |
+
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
|
788 |
+
gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
|
789 |
+
],
|
790 |
+
outputs=gr.File(label="Project File (.aiproj)"),
|
791 |
+
title="Save Everything Together",
|
792 |
+
description="Save your session, effects, and settings in one file to reuse later."
|
793 |
+
)
|
794 |
+
|
795 |
+
gr.Interface(
|
796 |
+
fn=load_project,
|
797 |
+
inputs=gr.File(label="Upload .aiproj File"),
|
798 |
+
outputs=[
|
799 |
+
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
|
800 |
+
gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
|
801 |
+
],
|
802 |
+
title="Resume Last Project",
|
803 |
+
description="Load your saved session"
|
804 |
+
)
|
805 |
+
|
806 |
+
# --- Cloud Project Sync (Premium Feature) ===
|
807 |
+
with gr.Tab("βοΈ Cloud Project Sync"):
|
808 |
+
gr.Markdown("Save your projects online and resume them from any device.")
|
809 |
+
|
810 |
+
project_id = gr.Textbox(label="Project ID (optional)")
|
811 |
+
project_name = gr.Textbox(label="Project Name")
|
812 |
+
project_data = gr.State()
|
813 |
+
|
814 |
+
def cloud_save_project(audio, preset, effects, name, project_id=""):
|
815 |
+
# Simulated cloud saving
|
816 |
+
project_data = {
|
817 |
+
"audio": AudioSegment.from_file(audio).raw_data,
|
818 |
+
"preset": preset,
|
819 |
+
"effects": effects
|
820 |
+
}
|
821 |
+
project_path = os.path.join(tempfile.gettempdir(), f"{name}.aiproj")
|
822 |
+
with open(project_path, "wb") as f:
|
823 |
+
pickle.dump(project_data, f)
|
824 |
+
return project_path, f"β
Saved as '{name}'"
|
825 |
+
|
826 |
+
def cloud_load_project(project_id):
|
827 |
+
# Simulated cloud loading
|
828 |
+
if not project_id:
|
829 |
+
return None, None, None
|
830 |
+
return "Sample Loaded", ["Noise Reduction", "Normalize"], ["Default"]
|
831 |
+
|
832 |
+
gr.Interface(
|
833 |
+
fn=cloud_save_project,
|
834 |
+
inputs=[
|
835 |
+
gr.File(label="Upload Audio", type="filepath"),
|
836 |
+
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
|
837 |
+
gr.CheckboxGroup(choices=effect_options, label="Effects"),
|
838 |
+
gr.Textbox(label="Project Name"),
|
839 |
+
gr.Textbox(label="Project ID (Optional)")
|
840 |
+
],
|
841 |
+
outputs=[
|
842 |
+
gr.File(label="Downloadable Project File"),
|
843 |
+
gr.Textbox(label="Status", value="β
Ready", lines=1)
|
844 |
+
],
|
845 |
+
title="Save to Cloud",
|
846 |
+
description="Save your project online and share it across devices."
|
847 |
+
)
|
848 |
+
|
849 |
+
gr.Interface(
|
850 |
+
fn=cloud_load_project,
|
851 |
+
inputs=gr.Textbox(label="Enter Project ID"),
|
852 |
+
outputs=[
|
853 |
+
gr.Audio(label="Loaded Audio", type="filepath"),
|
854 |
+
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
|
855 |
+
gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
|
856 |
+
],
|
857 |
+
title="Load from Cloud",
|
858 |
+
description="Resume a project from the cloud",
|
859 |
+
allow_flagging="never"
|
860 |
+
)
|
861 |
+
|
862 |
+
# --- AI Suggest Presets Based on Genre ===
|
863 |
+
with gr.Tab("π§ AI Suggest Preset"):
|
864 |
+
gr.Interface(
|
865 |
+
fn=suggest_preset_by_genre,
|
866 |
+
inputs=gr.Audio(label="Upload Track", type="filepath"),
|
867 |
+
outputs=gr.Dropdown(choices=preset_names, label="Recommended Preset"),
|
868 |
+
title="AI Recommends Best Preset",
|
869 |
+
description="Upload a track and let AI recommend the best preset based on genre."
|
870 |
+
)
|
871 |
+
|
872 |
+
# --- Create Karaoke Video from Audio + Lyrics ===
|
873 |
+
with gr.Tab("πΉ Create Karaoke Video"):
|
874 |
+
gr.Interface(
|
875 |
+
fn=create_karaoke_video,
|
876 |
+
inputs=[
|
877 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
878 |
+
gr.Textbox(label="Lyrics", lines=10),
|
879 |
+
gr.File(label="Background (Optional)")
|
880 |
+
],
|
881 |
+
outputs=gr.Video(label="Karaoke Video"),
|
882 |
+
title="Make Karaoke Videos from Audio + Lyrics",
|
883 |
+
description="Generate karaoke-style videos with real-time sync."
|
884 |
+
)
|
885 |
+
|
886 |
demo.launch()
|