Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
import os
|
3 |
-
from werkzeug.utils import secure_filename
|
4 |
import gradio as gr
|
5 |
from pydub import AudioSegment
|
6 |
from pydub.silence import detect_nonsilent
|
7 |
import numpy as np
|
8 |
import tempfile
|
|
|
9 |
import noisereduce as nr
|
10 |
import torch
|
11 |
from demucs import pretrained
|
@@ -19,40 +17,90 @@ import zipfile
|
|
19 |
import datetime
|
20 |
import librosa
|
21 |
import warnings
|
|
|
|
|
22 |
import base64
|
23 |
import pickle
|
24 |
import json
|
25 |
-
import soundfile as
|
26 |
-
import subprocess
|
27 |
-
from scipy.signal import butter, sosfilt
|
28 |
-
|
29 |
-
app = Flask(__name__)
|
30 |
-
|
31 |
-
# Ensure you have a directory to save uploaded files
|
32 |
-
UPLOAD_FOLDER = 'uploads'
|
33 |
-
if not os.path.exists(UPLOAD_FOLDER):
|
34 |
-
os.makedirs(UPLOAD_FOLDER)
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
#
|
39 |
-
@app.after_request
|
40 |
-
def after_request(response):
|
41 |
-
response.headers.add('Access-Control-Allow-Origin', '*')
|
42 |
-
response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
|
43 |
-
response.headers.add('Access-Control-Allow-Methods', 'POST')
|
44 |
-
return response
|
45 |
-
|
46 |
-
# Helper functions and audio processing logic
|
47 |
def file_to_base64_audio(file_path, mime_type="audio/wav"):
|
48 |
with open(file_path, "rb") as f:
|
49 |
data = f.read()
|
50 |
b64 = base64.b64encode(data).decode()
|
51 |
return f"data:{mime_type};base64,{b64}"
|
52 |
|
|
|
53 |
def apply_normalize(audio):
|
54 |
return audio.normalize()
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def audiosegment_to_array(audio):
|
57 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
58 |
|
@@ -64,6 +112,26 @@ def array_to_audiosegment(samples, frame_rate, channels=1):
|
|
64 |
channels=channels
|
65 |
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Define eq_map at the global scope
|
68 |
eq_map = {
|
69 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
@@ -88,11 +156,15 @@ eq_map = {
|
|
88 |
"Default": []
|
89 |
}
|
90 |
|
|
|
91 |
def auto_eq(audio, genre="Pop"):
|
|
|
|
|
92 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
93 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
94 |
filtered = sosfilt(sos, samples)
|
95 |
return samples + gain * filtered
|
|
|
96 |
samples, sr = audiosegment_to_array(audio)
|
97 |
samples = samples.astype(np.float64)
|
98 |
for band in eq_map.get(genre, []):
|
@@ -100,45 +172,135 @@ def auto_eq(audio, genre="Pop"):
|
|
100 |
samples = band_eq(samples, sr, low, high, gain)
|
101 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
104 |
status = "🔊 Loading audio..."
|
105 |
try:
|
|
|
106 |
audio = AudioSegment.from_file(audio_file)
|
107 |
status = "🛠 Applying effects..."
|
|
|
108 |
effect_map_real = {
|
109 |
-
"Noise Reduction":
|
110 |
-
"Compress Dynamic Range":
|
111 |
-
"Add Reverb":
|
112 |
-
"Pitch Shift": lambda x: x,
|
113 |
-
"Echo":
|
114 |
-
"Stereo Widening":
|
115 |
-
"Bass Boost":
|
116 |
-
"Treble Boost":
|
117 |
"Normalize": apply_normalize,
|
118 |
-
"Limiter": lambda x: x,
|
119 |
-
"Auto Gain": lambda x: x,
|
120 |
-
"Vocal Distortion": lambda x: x,
|
121 |
-
"Stage Mode":
|
122 |
}
|
123 |
-
|
|
|
124 |
for effect_name in selected_effects:
|
125 |
if effect_name in effect_map_real:
|
126 |
audio = effect_map_real[effect_name](audio)
|
127 |
history.append(audio)
|
|
|
128 |
status = "💾 Saving final audio..."
|
129 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
output_path = f.name
|
132 |
final_audio.export(output_path, format=export_format.lower())
|
133 |
-
|
134 |
-
|
|
|
135 |
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
|
136 |
status = "🎉 Done!"
|
137 |
return output_path, waveform_image, session_log, genre, status, history
|
|
|
138 |
except Exception as e:
|
139 |
status = f"❌ Error: {str(e)}"
|
140 |
return None, None, status, "", status, []
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
|
143 |
return json.dumps({
|
144 |
"timestamp": str(datetime.datetime.now()),
|
@@ -149,39 +311,223 @@ def generate_session_log(audio_path, effects, isolate_vocals, export_format, gen
|
|
149 |
"detected_genre": genre
|
150 |
}, indent=2)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
with gr.Blocks(css="""
|
186 |
body {
|
187 |
font-family: 'Segoe UI', sans-serif;
|
@@ -214,12 +560,13 @@ with gr.Blocks(css="""
|
|
214 |
''')
|
215 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
216 |
|
|
|
217 |
with gr.Tab("🎵 Single File Studio"):
|
218 |
with gr.Row():
|
219 |
with gr.Column(min_width=300):
|
220 |
input_audio = gr.Audio(label="Upload Audio", type="filepath")
|
221 |
-
effect_checkbox = gr.CheckboxGroup(choices=
|
222 |
-
preset_dropdown = gr.Dropdown(choices=
|
223 |
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
224 |
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
|
225 |
submit_btn = gr.Button("Process Audio")
|
@@ -229,13 +576,280 @@ with gr.Blocks(css="""
|
|
229 |
session_log_out = gr.Textbox(label="Session Log", lines=5)
|
230 |
genre_out = gr.Textbox(label="Detected Genre", lines=1)
|
231 |
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
)
|
238 |
|
239 |
-
#
|
240 |
-
|
241 |
-
app.run(host='0.0.0.0', port=7860)
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from pydub import AudioSegment
|
3 |
from pydub.silence import detect_nonsilent
|
4 |
import numpy as np
|
5 |
import tempfile
|
6 |
+
import os
|
7 |
import noisereduce as nr
|
8 |
import torch
|
9 |
from demucs import pretrained
|
|
|
17 |
import datetime
|
18 |
import librosa
|
19 |
import warnings
|
20 |
+
# from faster_whisper import WhisperModel
|
21 |
+
# from TTS.api import TTS
|
22 |
import base64
|
23 |
import pickle
|
24 |
import json
|
25 |
+
import soundfile as SF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
print("Gradio version:", gr.__version__)
|
28 |
+
warnings.filterwarnings("ignore")
|
29 |
|
30 |
+
# Helper to convert file to base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def file_to_base64_audio(file_path, mime_type="audio/wav"):
|
32 |
with open(file_path, "rb") as f:
|
33 |
data = f.read()
|
34 |
b64 = base64.b64encode(data).decode()
|
35 |
return f"data:{mime_type};base64,{b64}"
|
36 |
|
37 |
+
# === Effects Definitions ===
|
38 |
def apply_normalize(audio):
|
39 |
return audio.normalize()
|
40 |
|
41 |
+
def apply_noise_reduction(audio):
|
42 |
+
samples, frame_rate = audiosegment_to_array(audio)
|
43 |
+
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
|
44 |
+
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
|
45 |
+
|
46 |
+
def apply_compression(audio):
|
47 |
+
return audio.compress_dynamic_range()
|
48 |
+
|
49 |
+
def apply_reverb(audio):
|
50 |
+
reverb = audio - 10
|
51 |
+
return audio.overlay(reverb, position=1000)
|
52 |
+
|
53 |
+
def apply_pitch_shift(audio, semitones=-2):
|
54 |
+
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
|
55 |
+
samples = np.array(audio.get_array_of_samples())
|
56 |
+
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
|
57 |
+
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
|
58 |
+
|
59 |
+
def apply_echo(audio, delay_ms=500, decay=0.5):
|
60 |
+
echo = audio - 10
|
61 |
+
return audio.overlay(echo, position=delay_ms)
|
62 |
+
|
63 |
+
def apply_stereo_widen(audio, pan_amount=0.3):
|
64 |
+
left = audio.pan(-pan_amount)
|
65 |
+
right = audio.pan(pan_amount)
|
66 |
+
return AudioSegment.from_mono_audiosegments(left, right)
|
67 |
+
|
68 |
+
def apply_bass_boost(audio, gain=10):
|
69 |
+
return audio.low_pass_filter(100).apply_gain(gain)
|
70 |
+
|
71 |
+
def apply_treble_boost(audio, gain=10):
|
72 |
+
return audio.high_pass_filter(4000).apply_gain(gain)
|
73 |
+
|
74 |
+
def apply_limiter(audio, limit_dB=-1):
|
75 |
+
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
|
76 |
+
return limiter.apply_gain(limit_dB)
|
77 |
+
|
78 |
+
def apply_auto_gain(audio, target_dB=-20):
|
79 |
+
change = target_dB - audio.dBFS
|
80 |
+
return audio.apply_gain(change)
|
81 |
+
|
82 |
+
def apply_vocal_distortion(audio, intensity=0.3):
|
83 |
+
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
84 |
+
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
|
85 |
+
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
|
86 |
+
|
87 |
+
def apply_harmony(audio, shift_semitones=4):
|
88 |
+
shifted_up = apply_pitch_shift(audio, shift_semitones)
|
89 |
+
shifted_down = apply_pitch_shift(audio, -shift_semitones)
|
90 |
+
return audio.overlay(shifted_up).overlay(shifted_down)
|
91 |
+
|
92 |
+
def apply_stage_mode(audio):
|
93 |
+
processed = apply_reverb(audio)
|
94 |
+
processed = apply_bass_boost(processed, gain=6)
|
95 |
+
return apply_limiter(processed, limit_dB=-2)
|
96 |
+
|
97 |
+
def apply_bitcrush(audio, bit_depth=8):
|
98 |
+
samples = np.array(audio.get_array_of_samples())
|
99 |
+
max_val = 2 ** (bit_depth) - 1
|
100 |
+
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
|
101 |
+
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
|
102 |
+
|
103 |
+
# === Helper Functions ===
|
104 |
def audiosegment_to_array(audio):
|
105 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
106 |
|
|
|
112 |
channels=channels
|
113 |
)
|
114 |
|
115 |
+
# === Loudness Matching (EBU R128) ===
|
116 |
+
try:
|
117 |
+
import pyloudnorm as pyln
|
118 |
+
except ImportError:
|
119 |
+
print("Installing pyloudnorm...")
|
120 |
+
import subprocess
|
121 |
+
subprocess.run(["pip", "install", "pyloudnorm"])
|
122 |
+
import pyloudnorm as pyln
|
123 |
+
|
124 |
+
def match_loudness(audio_path, target_lufs=-14.0):
|
125 |
+
meter = pyln.Meter(44100)
|
126 |
+
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
|
127 |
+
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
|
128 |
+
loudness = meter.integrated_loudness(samples)
|
129 |
+
gain_db = target_lufs - loudness
|
130 |
+
adjusted = wav + gain_db
|
131 |
+
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
|
132 |
+
adjusted.export(out_path, format="wav")
|
133 |
+
return out_path
|
134 |
+
|
135 |
# Define eq_map at the global scope
|
136 |
eq_map = {
|
137 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
|
|
156 |
"Default": []
|
157 |
}
|
158 |
|
159 |
+
# Auto-EQ per Genre function
|
160 |
def auto_eq(audio, genre="Pop"):
|
161 |
+
from scipy.signal import butter, sosfilt
|
162 |
+
|
163 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
164 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
165 |
filtered = sosfilt(sos, samples)
|
166 |
return samples + gain * filtered
|
167 |
+
|
168 |
samples, sr = audiosegment_to_array(audio)
|
169 |
samples = samples.astype(np.float64)
|
170 |
for band in eq_map.get(genre, []):
|
|
|
172 |
samples = band_eq(samples, sr, low, high, gain)
|
173 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
174 |
|
175 |
+
from scipy.signal import butter, sosfilt
|
176 |
+
def band_eq(samples, sr, lowcut, highcut, gain):
|
177 |
+
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
178 |
+
filtered = sosfilt(sos, samples)
|
179 |
+
return samples + gain * filtered
|
180 |
+
|
181 |
+
samples, sr = audiosegment_to_array(audio)
|
182 |
+
samples = samples.astype(np.float64)
|
183 |
+
for band in eq_map.get(genre, []):
|
184 |
+
low, high, gain = band
|
185 |
+
samples = band_eq(samples, sr, low, high, gain)
|
186 |
+
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
187 |
+
|
188 |
+
# === Load Track Helpers ===
|
189 |
+
def load_track_local(path, sample_rate, channels=2):
|
190 |
+
sig, rate = torchaudio.load(path)
|
191 |
+
if rate != sample_rate:
|
192 |
+
sig = torchaudio.functional.resample(sig, rate, sample_rate)
|
193 |
+
if channels == 1:
|
194 |
+
sig = sig.mean(0)
|
195 |
+
return sig
|
196 |
+
|
197 |
+
def save_track(path, wav, sample_rate):
|
198 |
+
path = Path(path)
|
199 |
+
torchaudio.save(str(path), wav, sample_rate)
|
200 |
+
|
201 |
+
# === Vocal Isolation Helpers ===
|
202 |
+
def apply_vocal_isolation(audio_path):
|
203 |
+
model = pretrained.get_model(name='htdemucs')
|
204 |
+
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
205 |
+
ref = wav.mean(0)
|
206 |
+
wav -= ref[:, None]
|
207 |
+
sources = apply_model(model, wav[None])[0]
|
208 |
+
wav += ref[:, None]
|
209 |
+
vocal_track = sources[3].cpu()
|
210 |
+
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
211 |
+
save_track(out_path, vocal_track, model.samplerate)
|
212 |
+
return out_path
|
213 |
+
|
214 |
+
# === Stem Splitting Function ===
|
215 |
+
def stem_split(audio_path):
|
216 |
+
model = pretrained.get_model(name='htdemucs')
|
217 |
+
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
218 |
+
sources = apply_model(model, wav[None])[0]
|
219 |
+
output_dir = tempfile.mkdtemp()
|
220 |
+
stem_paths = []
|
221 |
+
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
|
222 |
+
path = os.path.join(output_dir, f"{name}.wav")
|
223 |
+
save_track(path, sources[i].cpu(), model.samplerate)
|
224 |
+
stem_paths.append(gr.File(value=path))
|
225 |
+
return stem_paths
|
226 |
+
|
227 |
+
# === Process Audio Function – Fully Featured ===
|
228 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
229 |
status = "🔊 Loading audio..."
|
230 |
try:
|
231 |
+
# Load input audio file
|
232 |
audio = AudioSegment.from_file(audio_file)
|
233 |
status = "🛠 Applying effects..."
|
234 |
+
|
235 |
effect_map_real = {
|
236 |
+
"Noise Reduction": apply_noise_reduction,
|
237 |
+
"Compress Dynamic Range": apply_compression,
|
238 |
+
"Add Reverb": apply_reverb,
|
239 |
+
"Pitch Shift": lambda x: apply_pitch_shift(x),
|
240 |
+
"Echo": apply_echo,
|
241 |
+
"Stereo Widening": apply_stereo_widen,
|
242 |
+
"Bass Boost": apply_bass_boost,
|
243 |
+
"Treble Boost": apply_treble_boost,
|
244 |
"Normalize": apply_normalize,
|
245 |
+
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
|
246 |
+
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
|
247 |
+
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
|
248 |
+
"Stage Mode": apply_stage_mode
|
249 |
}
|
250 |
+
|
251 |
+
history = [audio] # For undo functionality
|
252 |
for effect_name in selected_effects:
|
253 |
if effect_name in effect_map_real:
|
254 |
audio = effect_map_real[effect_name](audio)
|
255 |
history.append(audio)
|
256 |
+
|
257 |
status = "💾 Saving final audio..."
|
258 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
|
259 |
+
if isolate_vocals:
|
260 |
+
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
|
261 |
+
audio.export(temp_input, format="wav")
|
262 |
+
vocal_path = apply_vocal_isolation(temp_input)
|
263 |
+
final_audio = AudioSegment.from_wav(vocal_path)
|
264 |
+
else:
|
265 |
+
final_audio = audio
|
266 |
output_path = f.name
|
267 |
final_audio.export(output_path, format=export_format.lower())
|
268 |
+
|
269 |
+
waveform_image = show_waveform(output_path)
|
270 |
+
genre = detect_genre(output_path)
|
271 |
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
|
272 |
status = "🎉 Done!"
|
273 |
return output_path, waveform_image, session_log, genre, status, history
|
274 |
+
|
275 |
except Exception as e:
|
276 |
status = f"❌ Error: {str(e)}"
|
277 |
return None, None, status, "", status, []
|
278 |
|
279 |
+
# Waveform preview
|
280 |
+
def show_waveform(audio_file):
|
281 |
+
try:
|
282 |
+
audio = AudioSegment.from_file(audio_file)
|
283 |
+
samples = np.array(audio.get_array_of_samples())
|
284 |
+
plt.figure(figsize=(10, 2))
|
285 |
+
plt.plot(samples[:10000], color="skyblue")
|
286 |
+
plt.axis("off")
|
287 |
+
buf = BytesIO()
|
288 |
+
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
|
289 |
+
plt.close()
|
290 |
+
buf.seek(0)
|
291 |
+
return Image.open(buf)
|
292 |
+
except Exception:
|
293 |
+
return None
|
294 |
+
|
295 |
+
# Genre detection stub
|
296 |
+
def detect_genre(audio_path):
|
297 |
+
try:
|
298 |
+
y, sr = torchaudio.load(audio_path)
|
299 |
+
return "Speech"
|
300 |
+
except Exception:
|
301 |
+
return "Unknown"
|
302 |
+
|
303 |
+
# Session log generator
|
304 |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
|
305 |
return json.dumps({
|
306 |
"timestamp": str(datetime.datetime.now()),
|
|
|
311 |
"detected_genre": genre
|
312 |
}, indent=2)
|
313 |
|
314 |
+
# Preset Choices (30+ options)
|
315 |
+
preset_choices = {
|
316 |
+
"Default": [],
|
317 |
+
"Clean Podcast": ["Noise Reduction", "Normalize"],
|
318 |
+
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
|
319 |
+
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
|
320 |
+
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
|
321 |
+
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
|
322 |
+
"Voiceover Pro": ["Vocal Isolation", "EQ Match"],
|
323 |
+
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
|
324 |
+
"🎙 Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
|
325 |
+
"🧪 Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
|
326 |
+
"🎶 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
|
327 |
+
"🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
|
328 |
+
"🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
|
329 |
+
"🎵 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
|
330 |
+
"🎤 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
|
331 |
+
"💃 Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
|
332 |
+
"🕺 Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"],
|
333 |
+
"Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"],
|
334 |
+
"Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"],
|
335 |
+
"Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"],
|
336 |
+
"Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"],
|
337 |
+
"Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"],
|
338 |
+
"Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"],
|
339 |
+
"Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"],
|
340 |
+
"8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"],
|
341 |
+
"Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"],
|
342 |
+
"EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"],
|
343 |
+
"Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"],
|
344 |
+
"ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"],
|
345 |
+
"Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"],
|
346 |
+
"Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"],
|
347 |
+
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
|
348 |
+
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
|
349 |
+
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
|
350 |
+
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
|
351 |
+
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
|
352 |
+
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
|
353 |
+
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
|
354 |
+
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
|
355 |
+
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
|
356 |
+
"AI Generated Voice": ["Pitch Shift", "Vocal Distortion"],
|
357 |
+
}
|
358 |
+
|
359 |
+
preset_names = list(preset_choices.keys())
|
360 |
+
|
361 |
+
# Batch Processing
|
362 |
+
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
|
363 |
+
try:
|
364 |
+
output_dir = tempfile.mkdtemp()
|
365 |
+
results = []
|
366 |
+
session_logs = []
|
367 |
+
for file in files:
|
368 |
+
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5]
|
369 |
+
results.append(processed_path)
|
370 |
+
session_logs.append(log)
|
371 |
+
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
|
372 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
373 |
+
for i, res in enumerate(results):
|
374 |
+
filename = f"processed_{i}.{export_format.lower()}"
|
375 |
+
zipf.write(res, filename)
|
376 |
+
zipf.writestr(f"session_info_{i}.json", session_logs[i])
|
377 |
+
return zip_path, "📦 ZIP created successfully!"
|
378 |
+
except Exception as e:
|
379 |
+
return None, f"❌ Batch processing failed: {str(e)}"
|
380 |
+
|
381 |
+
# AI Remastering
|
382 |
+
def ai_remaster(audio_path):
|
383 |
+
try:
|
384 |
+
audio = AudioSegment.from_file(audio_path)
|
385 |
+
samples, sr = audiosegment_to_array(audio)
|
386 |
+
reduced = nr.reduce_noise(y=samples, sr=sr)
|
387 |
+
cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels)
|
388 |
+
cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav")
|
389 |
+
cleaned.export(cleaned_wav_path, format="wav")
|
390 |
+
isolated_path = apply_vocal_isolation(cleaned_wav_path)
|
391 |
+
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
|
392 |
+
return final_path
|
393 |
+
except Exception as e:
|
394 |
+
print(f"Remastering Error: {str(e)}")
|
395 |
+
return None
|
396 |
+
|
397 |
+
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
|
398 |
+
audio = AudioSegment.from_file(audio_path)
|
399 |
+
audio = auto_eq(audio, genre=genre)
|
400 |
+
audio = match_loudness(audio_path, target_lufs=target_lufs)
|
401 |
+
audio = apply_stereo_widen(audio, pan_amount=0.3)
|
402 |
+
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
|
403 |
+
audio.export(out_path, format="wav")
|
404 |
+
return out_path
|
405 |
+
|
406 |
+
# Harmonic Saturation
|
407 |
+
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
|
408 |
+
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
409 |
+
if saturation_type == "Tube":
|
410 |
+
saturated = np.tanh(intensity * samples)
|
411 |
+
elif saturation_type == "Tape":
|
412 |
+
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
|
413 |
+
elif saturation_type == "Console":
|
414 |
+
saturated = np.clip(samples, -32768, 32768) * intensity
|
415 |
+
elif saturation_type == "Mix Bus":
|
416 |
+
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
|
417 |
+
else:
|
418 |
+
saturated = samples
|
419 |
+
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
|
420 |
+
|
421 |
+
# Vocal Formant Correction
|
422 |
+
def formant_correct(audio, shift=1.0):
|
423 |
+
samples, sr = audiosegment_to_array(audio)
|
424 |
+
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
|
425 |
+
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
|
426 |
+
|
427 |
+
# Voice Swap
|
428 |
+
def clone_voice(source_audio, reference_audio):
|
429 |
+
source = AudioSegment.from_file(source_audio)
|
430 |
+
ref = AudioSegment.from_file(reference_audio)
|
431 |
+
mixed = source.overlay(ref - 10)
|
432 |
+
out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav")
|
433 |
+
mixed.export(out_path, format="wav")
|
434 |
+
return out_path
|
435 |
+
|
436 |
+
# Save/Load Mix Session (.aiproj)
|
437 |
+
def save_project(audio, preset, effects):
|
438 |
+
project_data = {
|
439 |
+
"audio": AudioSegment.from_file(audio).raw_data,
|
440 |
+
"preset": preset,
|
441 |
+
"effects": effects
|
442 |
+
}
|
443 |
+
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
|
444 |
+
with open(out_path, "wb") as f:
|
445 |
+
pickle.dump(project_data, f)
|
446 |
+
return out_path
|
447 |
+
|
448 |
+
def load_project(project_file):
|
449 |
+
with open(project_file.name, "rb") as f:
|
450 |
+
data = pickle.load(f)
|
451 |
+
return data["preset"], data["effects"]
|
452 |
+
|
453 |
+
# Prompt-Based Editing
|
454 |
+
def process_prompt(audio, prompt):
|
455 |
+
return apply_noise_reduction(audio)
|
456 |
+
|
457 |
+
# Vocal Pitch Correction
|
458 |
+
def auto_tune_vocal(audio_path, target_key="C"):
|
459 |
+
try:
|
460 |
+
audio = AudioSegment.from_file(audio_path)
|
461 |
+
semitones = key_to_semitone(target_key)
|
462 |
+
tuned_audio = apply_pitch_shift(audio, semitones)
|
463 |
+
out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav")
|
464 |
+
tuned_audio.export(out_path, format="wav")
|
465 |
+
return out_path
|
466 |
+
except Exception as e:
|
467 |
+
print(f"Auto-Tune Error: {e}")
|
468 |
+
return None
|
469 |
+
|
470 |
+
def key_to_semitone(key="C"):
|
471 |
+
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
|
472 |
+
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
|
473 |
+
return keys.get(key, 0)
|
474 |
+
|
475 |
+
# Loop Section Tool
|
476 |
+
def loop_section(audio_path, start_ms, end_ms, loops=2):
|
477 |
+
audio = AudioSegment.from_file(audio_path)
|
478 |
+
section = audio[start_ms:end_ms]
|
479 |
+
looped = section * loops
|
480 |
+
out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav")
|
481 |
+
looped.export(out_path, format="wav")
|
482 |
+
return out_path
|
483 |
+
|
484 |
+
# Frequency Spectrum Visualization
|
485 |
+
def visualize_spectrum(audio_path):
|
486 |
+
y, sr = torchaudio.load(audio_path)
|
487 |
+
y_np = y.numpy().flatten()
|
488 |
+
stft = librosa.stft(y_np)
|
489 |
+
db = librosa.amplitude_to_db(abs(stft))
|
490 |
+
plt.figure(figsize=(10, 4))
|
491 |
+
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
|
492 |
+
plt.colorbar(img, format="%+2.0f dB")
|
493 |
+
plt.title("Frequency Spectrum")
|
494 |
+
plt.tight_layout()
|
495 |
+
buf = BytesIO()
|
496 |
+
plt.savefig(buf, format="png")
|
497 |
+
plt.close()
|
498 |
+
buf.seek(0)
|
499 |
+
return Image.open(buf)
|
500 |
+
|
501 |
+
# A/B Compare
|
502 |
+
def compare_ab(track1_path, track2_path):
|
503 |
+
return track1_path, track2_path
|
504 |
+
|
505 |
+
# DAW Template Export
|
506 |
+
def generate_ableton_template(stems):
|
507 |
+
template = {
|
508 |
+
"format": "Ableton Live",
|
509 |
+
"stems": [os.path.basename(s) for s in stems],
|
510 |
+
"effects": ["Reverb", "EQ", "Compression"],
|
511 |
+
"tempo": 128,
|
512 |
+
"title": "Studio Pulse Project"
|
513 |
+
}
|
514 |
+
out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json")
|
515 |
+
with open(out_path, "w") as f:
|
516 |
+
json.dump(template, f, indent=2)
|
517 |
+
return out_path
|
518 |
+
|
519 |
+
# Export Full Mix ZIP
|
520 |
+
def export_full_mix(stems, final_mix):
|
521 |
+
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
|
522 |
+
with zipfile.ZipFile(zip_path, "w") as zipf:
|
523 |
+
for i, stem in enumerate(stems):
|
524 |
+
zipf.write(stem, f"stem_{i}.wav")
|
525 |
+
zipf.write(final_mix, "final_mix.wav")
|
526 |
+
return zip_path
|
527 |
+
|
528 |
+
# Text-to-Sound
|
529 |
+
|
530 |
+
# Main UI
|
531 |
with gr.Blocks(css="""
|
532 |
body {
|
533 |
font-family: 'Segoe UI', sans-serif;
|
|
|
560 |
''')
|
561 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
562 |
|
563 |
+
# --- Single File Studio Tab ---
|
564 |
with gr.Tab("🎵 Single File Studio"):
|
565 |
with gr.Row():
|
566 |
with gr.Column(min_width=300):
|
567 |
input_audio = gr.Audio(label="Upload Audio", type="filepath")
|
568 |
+
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
|
569 |
+
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
|
570 |
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
571 |
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
|
572 |
submit_btn = gr.Button("Process Audio")
|
|
|
576 |
session_log_out = gr.Textbox(label="Session Log", lines=5)
|
577 |
genre_out = gr.Textbox(label="Detected Genre", lines=1)
|
578 |
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
579 |
+
submit_btn.click(fn=process_audio, inputs=[
|
580 |
+
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
|
581 |
+
], outputs=[
|
582 |
+
output_audio, waveform_img, session_log_out, genre_out, status_box
|
583 |
+
])
|
584 |
+
|
585 |
+
# --- Remix Mode – Stem Splitting + Per-Stem Effects ===
|
586 |
+
with gr.Tab("🎛 Remix Mode"):
|
587 |
+
with gr.Row():
|
588 |
+
with gr.Column(min_width=200):
|
589 |
+
input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath")
|
590 |
+
split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.")
|
591 |
+
with gr.Column(min_width=400):
|
592 |
+
stem_outputs = [
|
593 |
+
gr.File(label="Vocals"),
|
594 |
+
gr.File(label="Drums"),
|
595 |
+
gr.File(label="Bass"),
|
596 |
+
gr.File(label="Other")
|
597 |
+
]
|
598 |
+
split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs)
|
599 |
+
|
600 |
+
# --- AI Remastering Tab – Now Fixed & Working ===
|
601 |
+
with gr.Tab("🔮 AI Remastering"):
|
602 |
+
gr.Interface(
|
603 |
+
fn=ai_remaster,
|
604 |
+
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
|
605 |
+
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
|
606 |
+
title="Transform Low-Quality Recordings to Studio Sound",
|
607 |
+
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
|
608 |
+
allow_flagging="never"
|
609 |
+
)
|
610 |
+
|
611 |
+
# --- Harmonic Saturation / Exciter – Now Included ===
|
612 |
+
with gr.Tab("🧬 Harmonic Saturation"):
|
613 |
+
gr.Interface(
|
614 |
+
fn=harmonic_saturation,
|
615 |
+
inputs=[
|
616 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
617 |
+
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
|
618 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
|
619 |
+
],
|
620 |
+
outputs=gr.Audio(label="Warm Output", type="filepath"),
|
621 |
+
title="Add Analog-Style Warmth",
|
622 |
+
description="Enhance clarity and presence using saturation styles like Tube or Tape.",
|
623 |
+
allow_flagging="never"
|
624 |
+
)
|
625 |
+
|
626 |
+
# --- Vocal Doubler / Harmonizer – Added Back ===
|
627 |
+
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
|
628 |
+
gr.Interface(
|
629 |
+
fn=lambda x: apply_harmony(x),
|
630 |
+
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
|
631 |
+
outputs=gr.Audio(label="Doubled Output", type="filepath"),
|
632 |
+
title="Add Vocal Doubling / Harmony",
|
633 |
+
description="Enhance vocals with doubling or harmony"
|
634 |
+
)
|
635 |
+
|
636 |
+
# --- Batch Processing – Full Support ===
|
637 |
+
with gr.Tab("🔊 Batch Processing"):
|
638 |
+
gr.Interface(
|
639 |
+
fn=batch_process_audio,
|
640 |
+
inputs=[
|
641 |
+
gr.File(label="Upload Multiple Files", file_count="multiple"),
|
642 |
+
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
|
643 |
+
gr.Checkbox(label="Isolate Vocals After Effects"),
|
644 |
+
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
|
645 |
+
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
646 |
+
],
|
647 |
+
outputs=[
|
648 |
+
gr.File(label="Download ZIP of All Processed Files"),
|
649 |
+
gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
650 |
+
],
|
651 |
+
title="Batch Audio Processor",
|
652 |
+
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
|
653 |
+
flagging_mode="never",
|
654 |
+
submit_btn="Process All Files"
|
655 |
+
)
|
656 |
+
|
657 |
+
# --- Vocal Pitch Correction – Auto-Tune Style ===
|
658 |
+
with gr.Tab("🎤 AI Auto-Tune"):
|
659 |
+
gr.Interface(
|
660 |
+
fn=auto_tune_vocal,
|
661 |
+
inputs=[
|
662 |
+
gr.File(label="Source Voice Clip"),
|
663 |
+
gr.Textbox(label="Target Key", value="C", lines=1)
|
664 |
+
],
|
665 |
+
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
|
666 |
+
title="AI Auto-Tune",
|
667 |
+
description="Correct vocal pitch automatically using AI"
|
668 |
+
)
|
669 |
+
|
670 |
+
# --- Frequency Spectrum Tab – Real-time Visualizer ===
|
671 |
+
with gr.Tab("📊 Frequency Spectrum"):
|
672 |
+
gr.Interface(
|
673 |
+
fn=visualize_spectrum,
|
674 |
+
inputs=gr.Audio(label="Upload Track", type="filepath"),
|
675 |
+
outputs=gr.Image(label="Spectrum Analysis")
|
676 |
+
)
|
677 |
+
|
678 |
+
# --- Loudness Graph Tab – EBU R128 Matching ===
|
679 |
+
with gr.Tab("📈 Loudness Graph"):
|
680 |
+
gr.Interface(
|
681 |
+
fn=match_loudness,
|
682 |
+
inputs=[
|
683 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
684 |
+
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
|
685 |
+
],
|
686 |
+
outputs=gr.Audio(label="Normalized Output", type="filepath"),
|
687 |
+
title="Match Loudness Across Tracks",
|
688 |
+
description="Ensure consistent volume using EBU R128 standard"
|
689 |
+
)
|
690 |
+
|
691 |
+
# --- Save/Load Mix Session (.aiproj) – Added Back ===
|
692 |
+
with gr.Tab("📁 Save/Load Project"):
|
693 |
+
with gr.Row():
|
694 |
+
with gr.Column(min_width=300):
|
695 |
+
gr.Interface(
|
696 |
+
fn=save_project,
|
697 |
+
inputs=[
|
698 |
+
gr.File(label="Original Audio"),
|
699 |
+
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
|
700 |
+
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
|
701 |
+
],
|
702 |
+
outputs=gr.File(label="Project File (.aiproj)")
|
703 |
+
)
|
704 |
+
with gr.Column(min_width=300):
|
705 |
+
gr.Interface(
|
706 |
+
fn=load_project,
|
707 |
+
inputs=gr.File(label="Upload .aiproj File"),
|
708 |
+
outputs=[
|
709 |
+
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
|
710 |
+
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
|
711 |
+
],
|
712 |
+
title="Resume Last Project",
|
713 |
+
description="Load your saved session"
|
714 |
+
)
|
715 |
+
|
716 |
+
# --- Prompt-Based Editing Tab – Added Back ===
|
717 |
+
with gr.Tab("🧠 Prompt-Based Editing"):
|
718 |
+
gr.Interface(
|
719 |
+
fn=process_prompt,
|
720 |
+
inputs=[
|
721 |
+
gr.File(label="Upload Audio", type="filepath"),
|
722 |
+
gr.Textbox(label="Describe What You Want", lines=5)
|
723 |
+
],
|
724 |
+
outputs=gr.Audio(label="Edited Output", type="filepath"),
|
725 |
+
title="Type Your Edits – AI Does the Rest",
|
726 |
+
description="Say what you want done and let AI handle it.",
|
727 |
+
allow_flagging="never"
|
728 |
+
)
|
729 |
+
|
730 |
+
# --- Custom EQ Editor ===
|
731 |
+
with gr.Tab("🎛 Custom EQ Editor"):
|
732 |
+
gr.Interface(
|
733 |
+
fn=auto_eq,
|
734 |
+
inputs=[
|
735 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
736 |
+
gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop")
|
737 |
+
],
|
738 |
+
outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"),
|
739 |
+
title="Custom EQ by Genre",
|
740 |
+
description="Apply custom EQ based on genre"
|
741 |
+
)
|
742 |
+
|
743 |
+
# --- A/B Compare ===
|
744 |
+
with gr.Tab("🎯 A/B Compare"):
|
745 |
+
gr.Interface(
|
746 |
+
fn=compare_ab,
|
747 |
+
inputs=[
|
748 |
+
gr.Audio(label="Version A", type="filepath"),
|
749 |
+
gr.Audio(label="Version B", type="filepath")
|
750 |
+
],
|
751 |
+
outputs=[
|
752 |
+
gr.Audio(label="Version A", type="filepath"),
|
753 |
+
gr.Audio(label="Version B", type="filepath")
|
754 |
+
],
|
755 |
+
title="Compare Two Versions",
|
756 |
+
description="Hear two mixes side-by-side",
|
757 |
+
allow_flagging="never"
|
758 |
+
)
|
759 |
+
|
760 |
+
# --- Loop Playback ===
|
761 |
+
with gr.Tab("🔁 Loop Playback"):
|
762 |
+
gr.Interface(
|
763 |
+
fn=loop_section,
|
764 |
+
inputs=[
|
765 |
+
gr.Audio(label="Upload Track", type="filepath"),
|
766 |
+
gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"),
|
767 |
+
gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"),
|
768 |
+
gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
|
769 |
+
],
|
770 |
+
outputs=gr.Audio(label="Looped Output", type="filepath"),
|
771 |
+
title="Repeat a Section",
|
772 |
+
description="Useful for editing a specific part"
|
773 |
+
)
|
774 |
+
|
775 |
+
# --- Share Effect Chain Tab – Now Defined! ===
|
776 |
+
with gr.Tab("🔗 Share Effect Chain"):
|
777 |
+
gr.Interface(
|
778 |
+
fn=lambda x: json.dumps(x),
|
779 |
+
inputs=gr.CheckboxGroup(choices=preset_choices["Default"]),
|
780 |
+
outputs=gr.Textbox(label="Share Code", lines=2),
|
781 |
+
title="Copy/Paste Effect Chain",
|
782 |
+
description="Share your setup via link/code"
|
783 |
+
)
|
784 |
+
|
785 |
+
with gr.Tab("📥 Load Shared Chain"):
|
786 |
+
gr.Interface(
|
787 |
+
fn=json.loads,
|
788 |
+
inputs=gr.Textbox(label="Paste Shared Code", lines=2),
|
789 |
+
outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"),
|
790 |
+
title="Restore From Shared Chain",
|
791 |
+
description="Paste shared effect chain JSON to restore settings"
|
792 |
+
)
|
793 |
+
|
794 |
+
# --- Keyboard Shortcuts Tab ===
|
795 |
+
with gr.Tab("⌨ Keyboard Shortcuts"):
|
796 |
+
gr.Markdown("""
|
797 |
+
### Keyboard Controls
|
798 |
+
- `Ctrl + Z`: Undo last effect
|
799 |
+
- `Ctrl + Y`: Redo
|
800 |
+
- `Spacebar`: Play/Stop playback
|
801 |
+
- `Ctrl + S`: Save current session
|
802 |
+
- `Ctrl + O`: Open session
|
803 |
+
- `Ctrl + C`: Copy effect chain
|
804 |
+
- `Ctrl + V`: Paste effect chain
|
805 |
+
""")
|
806 |
+
|
807 |
+
# --- Vocal Formant Correction – Now Defined! ===
|
808 |
+
with gr.Tab("🧑🎤 Vocal Formant Correction"):
|
809 |
+
gr.Interface(
|
810 |
+
fn=formant_correct,
|
811 |
+
inputs=[
|
812 |
+
gr.Audio(label="Upload Vocal Track", type="filepath"),
|
813 |
+
gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift")
|
814 |
+
],
|
815 |
+
outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"),
|
816 |
+
title="Preserve Vocal Quality During Pitch Shift",
|
817 |
+
description="Make pitch-shifted vocals sound more human"
|
818 |
+
)
|
819 |
+
|
820 |
+
# --- Voice Swap / Cloning – New Tab ===
|
821 |
+
with gr.Tab("🔁 Voice Swap / Cloning"):
|
822 |
+
gr.Interface(
|
823 |
+
fn=clone_voice,
|
824 |
+
inputs=[
|
825 |
+
gr.File(label="Source Voice Clip"),
|
826 |
+
gr.File(label="Reference Voice")
|
827 |
+
],
|
828 |
+
outputs=gr.Audio(label="Converted Output", type="filepath"),
|
829 |
+
title="Swap Voices Using AI",
|
830 |
+
description="Clone or convert voice from one to another"
|
831 |
+
)
|
832 |
+
|
833 |
+
# --- DAW Template Export – Now Included ===
|
834 |
+
with gr.Tab("🎛 DAW Template Export"):
|
835 |
+
gr.Interface(
|
836 |
+
fn=generate_ableton_template,
|
837 |
+
inputs=[gr.File(label="Upload Stems", file_count="multiple")],
|
838 |
+
outputs=gr.File(label="DAW Template (.json/.als/.flp)")
|
839 |
+
)
|
840 |
|
841 |
+
# --- Export Full Mix ZIP – Added Back ===
|
842 |
+
with gr.Tab("📁 Export Full Mix ZIP"):
|
843 |
+
gr.Interface(
|
844 |
+
fn=export_full_mix,
|
845 |
+
inputs=[
|
846 |
+
gr.File(label="Stems", file_count="multiple"),
|
847 |
+
gr.File(label="Final Mix")
|
848 |
+
],
|
849 |
+
outputs=gr.File(label="Full Mix Archive (.zip)"),
|
850 |
+
title="Export Stems + Final Mix Together",
|
851 |
+
description="Perfect for sharing with producers or archiving"
|
852 |
)
|
853 |
|
854 |
+
# Launch Gradio App
|
855 |
+
demo.launch()
|
|