tee342 commited on
Commit
e0a3557
·
verified ·
1 Parent(s): 7a13955

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +695 -81
app.py CHANGED
@@ -1,11 +1,9 @@
1
- from flask import Flask, request, jsonify
2
- import os
3
- from werkzeug.utils import secure_filename
4
  import gradio as gr
5
  from pydub import AudioSegment
6
  from pydub.silence import detect_nonsilent
7
  import numpy as np
8
  import tempfile
 
9
  import noisereduce as nr
10
  import torch
11
  from demucs import pretrained
@@ -19,40 +17,90 @@ import zipfile
19
  import datetime
20
  import librosa
21
  import warnings
 
 
22
  import base64
23
  import pickle
24
  import json
25
- import soundfile as sf
26
- import subprocess
27
- from scipy.signal import butter, sosfilt
28
-
29
- app = Flask(__name__)
30
-
31
- # Ensure you have a directory to save uploaded files
32
- UPLOAD_FOLDER = 'uploads'
33
- if not os.path.exists(UPLOAD_FOLDER):
34
- os.makedirs(UPLOAD_FOLDER)
35
 
36
- app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
 
37
 
38
- # Enable CORS
39
- @app.after_request
40
- def after_request(response):
41
- response.headers.add('Access-Control-Allow-Origin', '*')
42
- response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
43
- response.headers.add('Access-Control-Allow-Methods', 'POST')
44
- return response
45
-
46
- # Helper functions and audio processing logic
47
  def file_to_base64_audio(file_path, mime_type="audio/wav"):
48
  with open(file_path, "rb") as f:
49
  data = f.read()
50
  b64 = base64.b64encode(data).decode()
51
  return f"data:{mime_type};base64,{b64}"
52
 
 
53
  def apply_normalize(audio):
54
  return audio.normalize()
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  def audiosegment_to_array(audio):
57
  return np.array(audio.get_array_of_samples()), audio.frame_rate
58
 
@@ -64,6 +112,26 @@ def array_to_audiosegment(samples, frame_rate, channels=1):
64
  channels=channels
65
  )
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  # Define eq_map at the global scope
68
  eq_map = {
69
  "Pop": [(200, 500, -3), (2000, 4000, +4)],
@@ -88,11 +156,15 @@ eq_map = {
88
  "Default": []
89
  }
90
 
 
91
  def auto_eq(audio, genre="Pop"):
 
 
92
  def band_eq(samples, sr, lowcut, highcut, gain):
93
  sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
94
  filtered = sosfilt(sos, samples)
95
  return samples + gain * filtered
 
96
  samples, sr = audiosegment_to_array(audio)
97
  samples = samples.astype(np.float64)
98
  for band in eq_map.get(genre, []):
@@ -100,45 +172,135 @@ def auto_eq(audio, genre="Pop"):
100
  samples = band_eq(samples, sr, low, high, gain)
101
  return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
104
  status = "🔊 Loading audio..."
105
  try:
 
106
  audio = AudioSegment.from_file(audio_file)
107
  status = "🛠 Applying effects..."
 
108
  effect_map_real = {
109
- "Noise Reduction": apply_normalize,
110
- "Compress Dynamic Range": lambda x: x,
111
- "Add Reverb": lambda x: x,
112
- "Pitch Shift": lambda x: x,
113
- "Echo": lambda x: x,
114
- "Stereo Widening": lambda x: x,
115
- "Bass Boost": lambda x: x,
116
- "Treble Boost": lambda x: x,
117
  "Normalize": apply_normalize,
118
- "Limiter": lambda x: x,
119
- "Auto Gain": lambda x: x,
120
- "Vocal Distortion": lambda x: x,
121
- "Stage Mode": lambda x: x
122
  }
123
- history = [audio]
 
124
  for effect_name in selected_effects:
125
  if effect_name in effect_map_real:
126
  audio = effect_map_real[effect_name](audio)
127
  history.append(audio)
 
128
  status = "💾 Saving final audio..."
129
  with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
130
- final_audio = audio
 
 
 
 
 
 
131
  output_path = f.name
132
  final_audio.export(output_path, format=export_format.lower())
133
- waveform_image = "waveform.png"
134
- genre = "Pop"
 
135
  session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
136
  status = "🎉 Done!"
137
  return output_path, waveform_image, session_log, genre, status, history
 
138
  except Exception as e:
139
  status = f"❌ Error: {str(e)}"
140
  return None, None, status, "", status, []
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
143
  return json.dumps({
144
  "timestamp": str(datetime.datetime.now()),
@@ -149,39 +311,223 @@ def generate_session_log(audio_path, effects, isolate_vocals, export_format, gen
149
  "detected_genre": genre
150
  }, indent=2)
151
 
152
- @app.route('/process-audio', methods=['POST'])
153
- def process_audio_endpoint():
154
- if 'audio' not in request.files:
155
- return jsonify({'error': 'No audio file provided'}), 400
156
-
157
- audio_file = request.files['audio']
158
- if audio_file.filename == '':
159
- return jsonify({'error': 'No selected file'}), 400
160
-
161
- if audio_file:
162
- filename = secure_filename(audio_file.filename)
163
- filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
164
- audio_file.save(filepath)
165
-
166
- output_path, waveform_image, session_log, genre, status, history = process_audio(
167
- filepath,
168
- request.form.getlist('effects'),
169
- request.form.get('isolate_vocals') == 'true',
170
- request.form.get('preset'),
171
- request.form.get('export_format')
172
- )
173
-
174
- return jsonify({
175
- 'success': True,
176
- 'message': 'Audio processed successfully',
177
- 'output_path': output_path,
178
- 'waveform_image': waveform_image,
179
- 'session_log': session_log,
180
- 'genre': genre,
181
- 'status': status
182
- })
183
-
184
- # Define your Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  with gr.Blocks(css="""
186
  body {
187
  font-family: 'Segoe UI', sans-serif;
@@ -214,12 +560,13 @@ with gr.Blocks(css="""
214
  ''')
215
  gr.Markdown("### Upload, edit, export — powered by AI!")
216
 
 
217
  with gr.Tab("🎵 Single File Studio"):
218
  with gr.Row():
219
  with gr.Column(min_width=300):
220
  input_audio = gr.Audio(label="Upload Audio", type="filepath")
221
- effect_checkbox = gr.CheckboxGroup(choices=list(eq_map.keys()), label="Apply Effects in Order")
222
- preset_dropdown = gr.Dropdown(choices=list(eq_map.keys()), label="Select Preset", value="Pop")
223
  export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
224
  isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
225
  submit_btn = gr.Button("Process Audio")
@@ -229,13 +576,280 @@ with gr.Blocks(css="""
229
  session_log_out = gr.Textbox(label="Session Log", lines=5)
230
  genre_out = gr.Textbox(label="Detected Genre", lines=1)
231
  status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
233
- submit_btn.click(
234
- fn=process_audio,
235
- inputs=[input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format],
236
- outputs=[output_audio, waveform_img, session_log_out, genre_out, status_box]
 
 
 
 
 
 
 
237
  )
238
 
239
- # Run the Flask app
240
- if __name__ == '__main__':
241
- app.run(host='0.0.0.0', port=7860)
 
 
 
 
1
  import gradio as gr
2
  from pydub import AudioSegment
3
  from pydub.silence import detect_nonsilent
4
  import numpy as np
5
  import tempfile
6
+ import os
7
  import noisereduce as nr
8
  import torch
9
  from demucs import pretrained
 
17
  import datetime
18
  import librosa
19
  import warnings
20
+ # from faster_whisper import WhisperModel
21
+ # from TTS.api import TTS
22
  import base64
23
  import pickle
24
  import json
25
+ import soundfile as SF
 
 
 
 
 
 
 
 
 
26
 
27
+ print("Gradio version:", gr.__version__)
28
+ warnings.filterwarnings("ignore")
29
 
30
+ # Helper to convert file to base64
 
 
 
 
 
 
 
 
31
  def file_to_base64_audio(file_path, mime_type="audio/wav"):
32
  with open(file_path, "rb") as f:
33
  data = f.read()
34
  b64 = base64.b64encode(data).decode()
35
  return f"data:{mime_type};base64,{b64}"
36
 
37
+ # === Effects Definitions ===
38
  def apply_normalize(audio):
39
  return audio.normalize()
40
 
41
+ def apply_noise_reduction(audio):
42
+ samples, frame_rate = audiosegment_to_array(audio)
43
+ reduced = nr.reduce_noise(y=samples, sr=frame_rate)
44
+ return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
45
+
46
+ def apply_compression(audio):
47
+ return audio.compress_dynamic_range()
48
+
49
+ def apply_reverb(audio):
50
+ reverb = audio - 10
51
+ return audio.overlay(reverb, position=1000)
52
+
53
+ def apply_pitch_shift(audio, semitones=-2):
54
+ new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
55
+ samples = np.array(audio.get_array_of_samples())
56
+ resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
57
+ return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
58
+
59
+ def apply_echo(audio, delay_ms=500, decay=0.5):
60
+ echo = audio - 10
61
+ return audio.overlay(echo, position=delay_ms)
62
+
63
+ def apply_stereo_widen(audio, pan_amount=0.3):
64
+ left = audio.pan(-pan_amount)
65
+ right = audio.pan(pan_amount)
66
+ return AudioSegment.from_mono_audiosegments(left, right)
67
+
68
+ def apply_bass_boost(audio, gain=10):
69
+ return audio.low_pass_filter(100).apply_gain(gain)
70
+
71
+ def apply_treble_boost(audio, gain=10):
72
+ return audio.high_pass_filter(4000).apply_gain(gain)
73
+
74
+ def apply_limiter(audio, limit_dB=-1):
75
+ limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
76
+ return limiter.apply_gain(limit_dB)
77
+
78
+ def apply_auto_gain(audio, target_dB=-20):
79
+ change = target_dB - audio.dBFS
80
+ return audio.apply_gain(change)
81
+
82
+ def apply_vocal_distortion(audio, intensity=0.3):
83
+ samples = np.array(audio.get_array_of_samples()).astype(np.float32)
84
+ distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
85
+ return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
86
+
87
+ def apply_harmony(audio, shift_semitones=4):
88
+ shifted_up = apply_pitch_shift(audio, shift_semitones)
89
+ shifted_down = apply_pitch_shift(audio, -shift_semitones)
90
+ return audio.overlay(shifted_up).overlay(shifted_down)
91
+
92
+ def apply_stage_mode(audio):
93
+ processed = apply_reverb(audio)
94
+ processed = apply_bass_boost(processed, gain=6)
95
+ return apply_limiter(processed, limit_dB=-2)
96
+
97
+ def apply_bitcrush(audio, bit_depth=8):
98
+ samples = np.array(audio.get_array_of_samples())
99
+ max_val = 2 ** (bit_depth) - 1
100
+ downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
101
+ return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
102
+
103
+ # === Helper Functions ===
104
  def audiosegment_to_array(audio):
105
  return np.array(audio.get_array_of_samples()), audio.frame_rate
106
 
 
112
  channels=channels
113
  )
114
 
115
+ # === Loudness Matching (EBU R128) ===
116
+ try:
117
+ import pyloudnorm as pyln
118
+ except ImportError:
119
+ print("Installing pyloudnorm...")
120
+ import subprocess
121
+ subprocess.run(["pip", "install", "pyloudnorm"])
122
+ import pyloudnorm as pyln
123
+
124
+ def match_loudness(audio_path, target_lufs=-14.0):
125
+ meter = pyln.Meter(44100)
126
+ wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
127
+ samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
128
+ loudness = meter.integrated_loudness(samples)
129
+ gain_db = target_lufs - loudness
130
+ adjusted = wav + gain_db
131
+ out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
132
+ adjusted.export(out_path, format="wav")
133
+ return out_path
134
+
135
  # Define eq_map at the global scope
136
  eq_map = {
137
  "Pop": [(200, 500, -3), (2000, 4000, +4)],
 
156
  "Default": []
157
  }
158
 
159
+ # Auto-EQ per Genre function
160
  def auto_eq(audio, genre="Pop"):
161
+ from scipy.signal import butter, sosfilt
162
+
163
  def band_eq(samples, sr, lowcut, highcut, gain):
164
  sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
165
  filtered = sosfilt(sos, samples)
166
  return samples + gain * filtered
167
+
168
  samples, sr = audiosegment_to_array(audio)
169
  samples = samples.astype(np.float64)
170
  for band in eq_map.get(genre, []):
 
172
  samples = band_eq(samples, sr, low, high, gain)
173
  return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
174
 
175
+ from scipy.signal import butter, sosfilt
176
+ def band_eq(samples, sr, lowcut, highcut, gain):
177
+ sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
178
+ filtered = sosfilt(sos, samples)
179
+ return samples + gain * filtered
180
+
181
+ samples, sr = audiosegment_to_array(audio)
182
+ samples = samples.astype(np.float64)
183
+ for band in eq_map.get(genre, []):
184
+ low, high, gain = band
185
+ samples = band_eq(samples, sr, low, high, gain)
186
+ return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
187
+
188
+ # === Load Track Helpers ===
189
+ def load_track_local(path, sample_rate, channels=2):
190
+ sig, rate = torchaudio.load(path)
191
+ if rate != sample_rate:
192
+ sig = torchaudio.functional.resample(sig, rate, sample_rate)
193
+ if channels == 1:
194
+ sig = sig.mean(0)
195
+ return sig
196
+
197
+ def save_track(path, wav, sample_rate):
198
+ path = Path(path)
199
+ torchaudio.save(str(path), wav, sample_rate)
200
+
201
+ # === Vocal Isolation Helpers ===
202
+ def apply_vocal_isolation(audio_path):
203
+ model = pretrained.get_model(name='htdemucs')
204
+ wav = load_track_local(audio_path, model.samplerate, channels=2)
205
+ ref = wav.mean(0)
206
+ wav -= ref[:, None]
207
+ sources = apply_model(model, wav[None])[0]
208
+ wav += ref[:, None]
209
+ vocal_track = sources[3].cpu()
210
+ out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
211
+ save_track(out_path, vocal_track, model.samplerate)
212
+ return out_path
213
+
214
+ # === Stem Splitting Function ===
215
+ def stem_split(audio_path):
216
+ model = pretrained.get_model(name='htdemucs')
217
+ wav = load_track_local(audio_path, model.samplerate, channels=2)
218
+ sources = apply_model(model, wav[None])[0]
219
+ output_dir = tempfile.mkdtemp()
220
+ stem_paths = []
221
+ for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
222
+ path = os.path.join(output_dir, f"{name}.wav")
223
+ save_track(path, sources[i].cpu(), model.samplerate)
224
+ stem_paths.append(gr.File(value=path))
225
+ return stem_paths
226
+
227
+ # === Process Audio Function – Fully Featured ===
228
  def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
229
  status = "🔊 Loading audio..."
230
  try:
231
+ # Load input audio file
232
  audio = AudioSegment.from_file(audio_file)
233
  status = "🛠 Applying effects..."
234
+
235
  effect_map_real = {
236
+ "Noise Reduction": apply_noise_reduction,
237
+ "Compress Dynamic Range": apply_compression,
238
+ "Add Reverb": apply_reverb,
239
+ "Pitch Shift": lambda x: apply_pitch_shift(x),
240
+ "Echo": apply_echo,
241
+ "Stereo Widening": apply_stereo_widen,
242
+ "Bass Boost": apply_bass_boost,
243
+ "Treble Boost": apply_treble_boost,
244
  "Normalize": apply_normalize,
245
+ "Limiter": lambda x: apply_limiter(x, limit_dB=-1),
246
+ "Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
247
+ "Vocal Distortion": lambda x: apply_vocal_distortion(x),
248
+ "Stage Mode": apply_stage_mode
249
  }
250
+
251
+ history = [audio] # For undo functionality
252
  for effect_name in selected_effects:
253
  if effect_name in effect_map_real:
254
  audio = effect_map_real[effect_name](audio)
255
  history.append(audio)
256
+
257
  status = "💾 Saving final audio..."
258
  with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
259
+ if isolate_vocals:
260
+ temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
261
+ audio.export(temp_input, format="wav")
262
+ vocal_path = apply_vocal_isolation(temp_input)
263
+ final_audio = AudioSegment.from_wav(vocal_path)
264
+ else:
265
+ final_audio = audio
266
  output_path = f.name
267
  final_audio.export(output_path, format=export_format.lower())
268
+
269
+ waveform_image = show_waveform(output_path)
270
+ genre = detect_genre(output_path)
271
  session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
272
  status = "🎉 Done!"
273
  return output_path, waveform_image, session_log, genre, status, history
274
+
275
  except Exception as e:
276
  status = f"❌ Error: {str(e)}"
277
  return None, None, status, "", status, []
278
 
279
+ # Waveform preview
280
+ def show_waveform(audio_file):
281
+ try:
282
+ audio = AudioSegment.from_file(audio_file)
283
+ samples = np.array(audio.get_array_of_samples())
284
+ plt.figure(figsize=(10, 2))
285
+ plt.plot(samples[:10000], color="skyblue")
286
+ plt.axis("off")
287
+ buf = BytesIO()
288
+ plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
289
+ plt.close()
290
+ buf.seek(0)
291
+ return Image.open(buf)
292
+ except Exception:
293
+ return None
294
+
295
+ # Genre detection stub
296
+ def detect_genre(audio_path):
297
+ try:
298
+ y, sr = torchaudio.load(audio_path)
299
+ return "Speech"
300
+ except Exception:
301
+ return "Unknown"
302
+
303
+ # Session log generator
304
  def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
305
  return json.dumps({
306
  "timestamp": str(datetime.datetime.now()),
 
311
  "detected_genre": genre
312
  }, indent=2)
313
 
314
+ # Preset Choices (30+ options)
315
+ preset_choices = {
316
+ "Default": [],
317
+ "Clean Podcast": ["Noise Reduction", "Normalize"],
318
+ "Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
319
+ "Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
320
+ "Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
321
+ "ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
322
+ "Voiceover Pro": ["Vocal Isolation", "EQ Match"],
323
+ "8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
324
+ "🎙 Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
325
+ "🧪 Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
326
+ "🎶 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
327
+ "🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
328
+ "🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
329
+ "🎵 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
330
+ "🎤 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
331
+ "💃 Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
332
+ "🕺 Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"],
333
+ "Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"],
334
+ "Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"],
335
+ "Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"],
336
+ "Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"],
337
+ "Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"],
338
+ "Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"],
339
+ "Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"],
340
+ "8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"],
341
+ "Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"],
342
+ "EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"],
343
+ "Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"],
344
+ "ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"],
345
+ "Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"],
346
+ "Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"],
347
+ "Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
348
+ "Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
349
+ "Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
350
+ "Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
351
+ "Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
352
+ "Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
353
+ "Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
354
+ "Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
355
+ "Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
356
+ "AI Generated Voice": ["Pitch Shift", "Vocal Distortion"],
357
+ }
358
+
359
+ preset_names = list(preset_choices.keys())
360
+
361
+ # Batch Processing
362
+ def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
363
+ try:
364
+ output_dir = tempfile.mkdtemp()
365
+ results = []
366
+ session_logs = []
367
+ for file in files:
368
+ processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5]
369
+ results.append(processed_path)
370
+ session_logs.append(log)
371
+ zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
372
+ with zipfile.ZipFile(zip_path, 'w') as zipf:
373
+ for i, res in enumerate(results):
374
+ filename = f"processed_{i}.{export_format.lower()}"
375
+ zipf.write(res, filename)
376
+ zipf.writestr(f"session_info_{i}.json", session_logs[i])
377
+ return zip_path, "📦 ZIP created successfully!"
378
+ except Exception as e:
379
+ return None, f"❌ Batch processing failed: {str(e)}"
380
+
381
+ # AI Remastering
382
+ def ai_remaster(audio_path):
383
+ try:
384
+ audio = AudioSegment.from_file(audio_path)
385
+ samples, sr = audiosegment_to_array(audio)
386
+ reduced = nr.reduce_noise(y=samples, sr=sr)
387
+ cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels)
388
+ cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav")
389
+ cleaned.export(cleaned_wav_path, format="wav")
390
+ isolated_path = apply_vocal_isolation(cleaned_wav_path)
391
+ final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
392
+ return final_path
393
+ except Exception as e:
394
+ print(f"Remastering Error: {str(e)}")
395
+ return None
396
+
397
+ def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
398
+ audio = AudioSegment.from_file(audio_path)
399
+ audio = auto_eq(audio, genre=genre)
400
+ audio = match_loudness(audio_path, target_lufs=target_lufs)
401
+ audio = apply_stereo_widen(audio, pan_amount=0.3)
402
+ out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
403
+ audio.export(out_path, format="wav")
404
+ return out_path
405
+
406
+ # Harmonic Saturation
407
+ def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
408
+ samples = np.array(audio.get_array_of_samples()).astype(np.float32)
409
+ if saturation_type == "Tube":
410
+ saturated = np.tanh(intensity * samples)
411
+ elif saturation_type == "Tape":
412
+ saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
413
+ elif saturation_type == "Console":
414
+ saturated = np.clip(samples, -32768, 32768) * intensity
415
+ elif saturation_type == "Mix Bus":
416
+ saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
417
+ else:
418
+ saturated = samples
419
+ return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
420
+
421
+ # Vocal Formant Correction
422
+ def formant_correct(audio, shift=1.0):
423
+ samples, sr = audiosegment_to_array(audio)
424
+ corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
425
+ return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
426
+
427
+ # Voice Swap
428
+ def clone_voice(source_audio, reference_audio):
429
+ source = AudioSegment.from_file(source_audio)
430
+ ref = AudioSegment.from_file(reference_audio)
431
+ mixed = source.overlay(ref - 10)
432
+ out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav")
433
+ mixed.export(out_path, format="wav")
434
+ return out_path
435
+
436
+ # Save/Load Mix Session (.aiproj)
437
+ def save_project(audio, preset, effects):
438
+ project_data = {
439
+ "audio": AudioSegment.from_file(audio).raw_data,
440
+ "preset": preset,
441
+ "effects": effects
442
+ }
443
+ out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
444
+ with open(out_path, "wb") as f:
445
+ pickle.dump(project_data, f)
446
+ return out_path
447
+
448
+ def load_project(project_file):
449
+ with open(project_file.name, "rb") as f:
450
+ data = pickle.load(f)
451
+ return data["preset"], data["effects"]
452
+
453
+ # Prompt-Based Editing
454
+ def process_prompt(audio, prompt):
455
+ return apply_noise_reduction(audio)
456
+
457
+ # Vocal Pitch Correction
458
+ def auto_tune_vocal(audio_path, target_key="C"):
459
+ try:
460
+ audio = AudioSegment.from_file(audio_path)
461
+ semitones = key_to_semitone(target_key)
462
+ tuned_audio = apply_pitch_shift(audio, semitones)
463
+ out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav")
464
+ tuned_audio.export(out_path, format="wav")
465
+ return out_path
466
+ except Exception as e:
467
+ print(f"Auto-Tune Error: {e}")
468
+ return None
469
+
470
+ def key_to_semitone(key="C"):
471
+ keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
472
+ "F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
473
+ return keys.get(key, 0)
474
+
475
+ # Loop Section Tool
476
+ def loop_section(audio_path, start_ms, end_ms, loops=2):
477
+ audio = AudioSegment.from_file(audio_path)
478
+ section = audio[start_ms:end_ms]
479
+ looped = section * loops
480
+ out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav")
481
+ looped.export(out_path, format="wav")
482
+ return out_path
483
+
484
+ # Frequency Spectrum Visualization
485
+ def visualize_spectrum(audio_path):
486
+ y, sr = torchaudio.load(audio_path)
487
+ y_np = y.numpy().flatten()
488
+ stft = librosa.stft(y_np)
489
+ db = librosa.amplitude_to_db(abs(stft))
490
+ plt.figure(figsize=(10, 4))
491
+ img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
492
+ plt.colorbar(img, format="%+2.0f dB")
493
+ plt.title("Frequency Spectrum")
494
+ plt.tight_layout()
495
+ buf = BytesIO()
496
+ plt.savefig(buf, format="png")
497
+ plt.close()
498
+ buf.seek(0)
499
+ return Image.open(buf)
500
+
501
+ # A/B Compare
502
+ def compare_ab(track1_path, track2_path):
503
+ return track1_path, track2_path
504
+
505
+ # DAW Template Export
506
+ def generate_ableton_template(stems):
507
+ template = {
508
+ "format": "Ableton Live",
509
+ "stems": [os.path.basename(s) for s in stems],
510
+ "effects": ["Reverb", "EQ", "Compression"],
511
+ "tempo": 128,
512
+ "title": "Studio Pulse Project"
513
+ }
514
+ out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json")
515
+ with open(out_path, "w") as f:
516
+ json.dump(template, f, indent=2)
517
+ return out_path
518
+
519
+ # Export Full Mix ZIP
520
+ def export_full_mix(stems, final_mix):
521
+ zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
522
+ with zipfile.ZipFile(zip_path, "w") as zipf:
523
+ for i, stem in enumerate(stems):
524
+ zipf.write(stem, f"stem_{i}.wav")
525
+ zipf.write(final_mix, "final_mix.wav")
526
+ return zip_path
527
+
528
+ # Text-to-Sound
529
+
530
+ # Main UI
531
  with gr.Blocks(css="""
532
  body {
533
  font-family: 'Segoe UI', sans-serif;
 
560
  ''')
561
  gr.Markdown("### Upload, edit, export — powered by AI!")
562
 
563
+ # --- Single File Studio Tab ---
564
  with gr.Tab("🎵 Single File Studio"):
565
  with gr.Row():
566
  with gr.Column(min_width=300):
567
  input_audio = gr.Audio(label="Upload Audio", type="filepath")
568
+ effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
569
+ preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
570
  export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
571
  isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
572
  submit_btn = gr.Button("Process Audio")
 
576
  session_log_out = gr.Textbox(label="Session Log", lines=5)
577
  genre_out = gr.Textbox(label="Detected Genre", lines=1)
578
  status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
579
+ submit_btn.click(fn=process_audio, inputs=[
580
+ input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
581
+ ], outputs=[
582
+ output_audio, waveform_img, session_log_out, genre_out, status_box
583
+ ])
584
+
585
+ # --- Remix Mode – Stem Splitting + Per-Stem Effects ===
586
+ with gr.Tab("🎛 Remix Mode"):
587
+ with gr.Row():
588
+ with gr.Column(min_width=200):
589
+ input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath")
590
+ split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.")
591
+ with gr.Column(min_width=400):
592
+ stem_outputs = [
593
+ gr.File(label="Vocals"),
594
+ gr.File(label="Drums"),
595
+ gr.File(label="Bass"),
596
+ gr.File(label="Other")
597
+ ]
598
+ split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs)
599
+
600
+ # --- AI Remastering Tab – Now Fixed & Working ===
601
+ with gr.Tab("🔮 AI Remastering"):
602
+ gr.Interface(
603
+ fn=ai_remaster,
604
+ inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
605
+ outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
606
+ title="Transform Low-Quality Recordings to Studio Sound",
607
+ description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
608
+ allow_flagging="never"
609
+ )
610
+
611
+ # --- Harmonic Saturation / Exciter – Now Included ===
612
+ with gr.Tab("🧬 Harmonic Saturation"):
613
+ gr.Interface(
614
+ fn=harmonic_saturation,
615
+ inputs=[
616
+ gr.Audio(label="Upload Track", type="filepath"),
617
+ gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
618
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
619
+ ],
620
+ outputs=gr.Audio(label="Warm Output", type="filepath"),
621
+ title="Add Analog-Style Warmth",
622
+ description="Enhance clarity and presence using saturation styles like Tube or Tape.",
623
+ allow_flagging="never"
624
+ )
625
+
626
+ # --- Vocal Doubler / Harmonizer – Added Back ===
627
+ with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
628
+ gr.Interface(
629
+ fn=lambda x: apply_harmony(x),
630
+ inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
631
+ outputs=gr.Audio(label="Doubled Output", type="filepath"),
632
+ title="Add Vocal Doubling / Harmony",
633
+ description="Enhance vocals with doubling or harmony"
634
+ )
635
+
636
+ # --- Batch Processing – Full Support ===
637
+ with gr.Tab("🔊 Batch Processing"):
638
+ gr.Interface(
639
+ fn=batch_process_audio,
640
+ inputs=[
641
+ gr.File(label="Upload Multiple Files", file_count="multiple"),
642
+ gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
643
+ gr.Checkbox(label="Isolate Vocals After Effects"),
644
+ gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
645
+ gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
646
+ ],
647
+ outputs=[
648
+ gr.File(label="Download ZIP of All Processed Files"),
649
+ gr.Textbox(label="Status", value="✅ Ready", lines=1)
650
+ ],
651
+ title="Batch Audio Processor",
652
+ description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
653
+ flagging_mode="never",
654
+ submit_btn="Process All Files"
655
+ )
656
+
657
+ # --- Vocal Pitch Correction – Auto-Tune Style ===
658
+ with gr.Tab("🎤 AI Auto-Tune"):
659
+ gr.Interface(
660
+ fn=auto_tune_vocal,
661
+ inputs=[
662
+ gr.File(label="Source Voice Clip"),
663
+ gr.Textbox(label="Target Key", value="C", lines=1)
664
+ ],
665
+ outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
666
+ title="AI Auto-Tune",
667
+ description="Correct vocal pitch automatically using AI"
668
+ )
669
+
670
+ # --- Frequency Spectrum Tab – Real-time Visualizer ===
671
+ with gr.Tab("📊 Frequency Spectrum"):
672
+ gr.Interface(
673
+ fn=visualize_spectrum,
674
+ inputs=gr.Audio(label="Upload Track", type="filepath"),
675
+ outputs=gr.Image(label="Spectrum Analysis")
676
+ )
677
+
678
+ # --- Loudness Graph Tab – EBU R128 Matching ===
679
+ with gr.Tab("📈 Loudness Graph"):
680
+ gr.Interface(
681
+ fn=match_loudness,
682
+ inputs=[
683
+ gr.Audio(label="Upload Track", type="filepath"),
684
+ gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
685
+ ],
686
+ outputs=gr.Audio(label="Normalized Output", type="filepath"),
687
+ title="Match Loudness Across Tracks",
688
+ description="Ensure consistent volume using EBU R128 standard"
689
+ )
690
+
691
+ # --- Save/Load Mix Session (.aiproj) – Added Back ===
692
+ with gr.Tab("📁 Save/Load Project"):
693
+ with gr.Row():
694
+ with gr.Column(min_width=300):
695
+ gr.Interface(
696
+ fn=save_project,
697
+ inputs=[
698
+ gr.File(label="Original Audio"),
699
+ gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
700
+ gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
701
+ ],
702
+ outputs=gr.File(label="Project File (.aiproj)")
703
+ )
704
+ with gr.Column(min_width=300):
705
+ gr.Interface(
706
+ fn=load_project,
707
+ inputs=gr.File(label="Upload .aiproj File"),
708
+ outputs=[
709
+ gr.Dropdown(choices=preset_names, label="Loaded Preset"),
710
+ gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
711
+ ],
712
+ title="Resume Last Project",
713
+ description="Load your saved session"
714
+ )
715
+
716
+ # --- Prompt-Based Editing Tab – Added Back ===
717
+ with gr.Tab("🧠 Prompt-Based Editing"):
718
+ gr.Interface(
719
+ fn=process_prompt,
720
+ inputs=[
721
+ gr.File(label="Upload Audio", type="filepath"),
722
+ gr.Textbox(label="Describe What You Want", lines=5)
723
+ ],
724
+ outputs=gr.Audio(label="Edited Output", type="filepath"),
725
+ title="Type Your Edits – AI Does the Rest",
726
+ description="Say what you want done and let AI handle it.",
727
+ allow_flagging="never"
728
+ )
729
+
730
+ # --- Custom EQ Editor ===
731
+ with gr.Tab("🎛 Custom EQ Editor"):
732
+ gr.Interface(
733
+ fn=auto_eq,
734
+ inputs=[
735
+ gr.Audio(label="Upload Track", type="filepath"),
736
+ gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop")
737
+ ],
738
+ outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"),
739
+ title="Custom EQ by Genre",
740
+ description="Apply custom EQ based on genre"
741
+ )
742
+
743
+ # --- A/B Compare ===
744
+ with gr.Tab("🎯 A/B Compare"):
745
+ gr.Interface(
746
+ fn=compare_ab,
747
+ inputs=[
748
+ gr.Audio(label="Version A", type="filepath"),
749
+ gr.Audio(label="Version B", type="filepath")
750
+ ],
751
+ outputs=[
752
+ gr.Audio(label="Version A", type="filepath"),
753
+ gr.Audio(label="Version B", type="filepath")
754
+ ],
755
+ title="Compare Two Versions",
756
+ description="Hear two mixes side-by-side",
757
+ allow_flagging="never"
758
+ )
759
+
760
+ # --- Loop Playback ===
761
+ with gr.Tab("🔁 Loop Playback"):
762
+ gr.Interface(
763
+ fn=loop_section,
764
+ inputs=[
765
+ gr.Audio(label="Upload Track", type="filepath"),
766
+ gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"),
767
+ gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"),
768
+ gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
769
+ ],
770
+ outputs=gr.Audio(label="Looped Output", type="filepath"),
771
+ title="Repeat a Section",
772
+ description="Useful for editing a specific part"
773
+ )
774
+
775
+ # --- Share Effect Chain Tab – Now Defined! ===
776
+ with gr.Tab("🔗 Share Effect Chain"):
777
+ gr.Interface(
778
+ fn=lambda x: json.dumps(x),
779
+ inputs=gr.CheckboxGroup(choices=preset_choices["Default"]),
780
+ outputs=gr.Textbox(label="Share Code", lines=2),
781
+ title="Copy/Paste Effect Chain",
782
+ description="Share your setup via link/code"
783
+ )
784
+
785
+ with gr.Tab("📥 Load Shared Chain"):
786
+ gr.Interface(
787
+ fn=json.loads,
788
+ inputs=gr.Textbox(label="Paste Shared Code", lines=2),
789
+ outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"),
790
+ title="Restore From Shared Chain",
791
+ description="Paste shared effect chain JSON to restore settings"
792
+ )
793
+
794
+ # --- Keyboard Shortcuts Tab ===
795
+ with gr.Tab("⌨ Keyboard Shortcuts"):
796
+ gr.Markdown("""
797
+ ### Keyboard Controls
798
+ - `Ctrl + Z`: Undo last effect
799
+ - `Ctrl + Y`: Redo
800
+ - `Spacebar`: Play/Stop playback
801
+ - `Ctrl + S`: Save current session
802
+ - `Ctrl + O`: Open session
803
+ - `Ctrl + C`: Copy effect chain
804
+ - `Ctrl + V`: Paste effect chain
805
+ """)
806
+
807
+ # --- Vocal Formant Correction – Now Defined! ===
808
+ with gr.Tab("🧑‍🎤 Vocal Formant Correction"):
809
+ gr.Interface(
810
+ fn=formant_correct,
811
+ inputs=[
812
+ gr.Audio(label="Upload Vocal Track", type="filepath"),
813
+ gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift")
814
+ ],
815
+ outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"),
816
+ title="Preserve Vocal Quality During Pitch Shift",
817
+ description="Make pitch-shifted vocals sound more human"
818
+ )
819
+
820
+ # --- Voice Swap / Cloning – New Tab ===
821
+ with gr.Tab("🔁 Voice Swap / Cloning"):
822
+ gr.Interface(
823
+ fn=clone_voice,
824
+ inputs=[
825
+ gr.File(label="Source Voice Clip"),
826
+ gr.File(label="Reference Voice")
827
+ ],
828
+ outputs=gr.Audio(label="Converted Output", type="filepath"),
829
+ title="Swap Voices Using AI",
830
+ description="Clone or convert voice from one to another"
831
+ )
832
+
833
+ # --- DAW Template Export – Now Included ===
834
+ with gr.Tab("🎛 DAW Template Export"):
835
+ gr.Interface(
836
+ fn=generate_ableton_template,
837
+ inputs=[gr.File(label="Upload Stems", file_count="multiple")],
838
+ outputs=gr.File(label="DAW Template (.json/.als/.flp)")
839
+ )
840
 
841
+ # --- Export Full Mix ZIP – Added Back ===
842
+ with gr.Tab("📁 Export Full Mix ZIP"):
843
+ gr.Interface(
844
+ fn=export_full_mix,
845
+ inputs=[
846
+ gr.File(label="Stems", file_count="multiple"),
847
+ gr.File(label="Final Mix")
848
+ ],
849
+ outputs=gr.File(label="Full Mix Archive (.zip)"),
850
+ title="Export Stems + Final Mix Together",
851
+ description="Perfect for sharing with producers or archiving"
852
  )
853
 
854
+ # Launch Gradio App
855
+ demo.launch()