Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,14 @@ import numpy as np
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import noisereduce as nr
|
7 |
-
|
8 |
-
import subprocess
|
9 |
import torch
|
10 |
from demucs import pretrained
|
11 |
from demucs.apply import apply_model
|
12 |
import torchaudio
|
13 |
-
import torch
|
14 |
from pathlib import Path
|
15 |
|
16 |
-
# Helper
|
17 |
def audiosegment_to_array(audio):
|
18 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
19 |
|
@@ -25,7 +23,7 @@ def array_to_audiosegment(samples, frame_rate, channels=1):
|
|
25 |
channels=channels
|
26 |
)
|
27 |
|
28 |
-
# Effect Functions
|
29 |
def apply_normalize(audio):
|
30 |
return audio.normalize()
|
31 |
|
@@ -71,33 +69,7 @@ def apply_bass_boost(audio, gain=10):
|
|
71 |
def apply_treble_boost(audio, gain=10):
|
72 |
return audio.high_pass_filter(4000).apply_gain(gain)
|
73 |
|
74 |
-
# Vocal Isolation
|
75 |
-
def apply_vocal_isolation(audio_path):
|
76 |
-
model = pretrained.get_model(name='htdemucs')
|
77 |
-
wav = load_track_local(audio_path, model.samplerate, channels=2) # stereo
|
78 |
-
ref = wav.mean(0)
|
79 |
-
wav -= ref[:, None]
|
80 |
-
sources = apply_model(model, wav[None])[0]
|
81 |
-
wav += ref[:, None]
|
82 |
-
|
83 |
-
# Get vocals (index 3)
|
84 |
-
vocal_track = sources[3].cpu()
|
85 |
-
|
86 |
-
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
87 |
-
save_track(out_path, vocal_track, model.samplerate)
|
88 |
-
return out_path
|
89 |
-
|
90 |
-
|
91 |
-
# Local copy of helper functions from demucs
|
92 |
-
def load_track(track, sample_rate, mono=True):
|
93 |
-
wav, sr = torchaudio.load(str(track))
|
94 |
-
if sr != sample_rate:
|
95 |
-
wav = torchaudio.functional.resample(wav, sr, sample_rate)
|
96 |
-
if mono and wav.shape[0] == 2:
|
97 |
-
wav = wav.mean(0)
|
98 |
-
return wav
|
99 |
-
|
100 |
-
|
101 |
def load_track_local(path, sample_rate, channels=2):
|
102 |
sig, rate = torchaudio.load(path)
|
103 |
if rate != sample_rate:
|
@@ -106,16 +78,38 @@ def load_track_local(path, sample_rate, channels=2):
|
|
106 |
sig = sig.mean(0)
|
107 |
return sig
|
108 |
|
109 |
-
|
110 |
def save_track(path, wav, sample_rate):
|
111 |
path = Path(path)
|
112 |
torchaudio.save(str(path), wav, sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
return out_path
|
114 |
|
115 |
-
#
|
116 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
audio = AudioSegment.from_file(audio_file)
|
118 |
-
original = audio
|
119 |
|
120 |
effect_map = {
|
121 |
"Noise Reduction": apply_noise_reduction,
|
@@ -129,7 +123,9 @@ def process_audio(audio_file, effects, isolate_vocals):
|
|
129 |
"Normalize": apply_normalize,
|
130 |
}
|
131 |
|
132 |
-
|
|
|
|
|
133 |
if effect_name in effect_map:
|
134 |
audio = effect_map[effect_name](audio)
|
135 |
|
@@ -142,11 +138,12 @@ def process_audio(audio_file, effects, isolate_vocals):
|
|
142 |
else:
|
143 |
final_audio = audio
|
144 |
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
-
# Gradio Interface
|
149 |
-
|
150 |
"Noise Reduction",
|
151 |
"Compress Dynamic Range",
|
152 |
"Add Reverb",
|
@@ -158,16 +155,19 @@ effect_choices = [
|
|
158 |
"Normalize"
|
159 |
]
|
160 |
|
|
|
|
|
161 |
interface = gr.Interface(
|
162 |
fn=process_audio,
|
163 |
inputs=[
|
164 |
gr.Audio(label="Upload Audio", type="filepath"),
|
165 |
-
gr.CheckboxGroup(choices=
|
166 |
-
gr.Checkbox(label="Isolate Vocals After Effects")
|
|
|
167 |
],
|
168 |
-
outputs=gr.Audio(label="Processed Audio", type="filepath"),
|
169 |
-
title="
|
170 |
-
description="Apply multiple effects
|
171 |
allow_flagging="never"
|
172 |
)
|
173 |
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import noisereduce as nr
|
7 |
+
import json
|
|
|
8 |
import torch
|
9 |
from demucs import pretrained
|
10 |
from demucs.apply import apply_model
|
11 |
import torchaudio
|
|
|
12 |
from pathlib import Path
|
13 |
|
14 |
+
# === Helper Functions ===
|
15 |
def audiosegment_to_array(audio):
|
16 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
17 |
|
|
|
23 |
channels=channels
|
24 |
)
|
25 |
|
26 |
+
# === Effect Functions ===
|
27 |
def apply_normalize(audio):
|
28 |
return audio.normalize()
|
29 |
|
|
|
69 |
def apply_treble_boost(audio, gain=10):
|
70 |
return audio.high_pass_filter(4000).apply_gain(gain)
|
71 |
|
72 |
+
# === Vocal Isolation Helpers ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def load_track_local(path, sample_rate, channels=2):
|
74 |
sig, rate = torchaudio.load(path)
|
75 |
if rate != sample_rate:
|
|
|
78 |
sig = sig.mean(0)
|
79 |
return sig
|
80 |
|
|
|
81 |
def save_track(path, wav, sample_rate):
|
82 |
path = Path(path)
|
83 |
torchaudio.save(str(path), wav, sample_rate)
|
84 |
+
|
85 |
+
def apply_vocal_isolation(audio_path):
|
86 |
+
model = pretrained.get_model(name='htdemucs')
|
87 |
+
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
88 |
+
ref = wav.mean(0)
|
89 |
+
wav -= ref[:, None]
|
90 |
+
sources = apply_model(model, wav[None])[0]
|
91 |
+
wav += ref[:, None]
|
92 |
+
|
93 |
+
vocal_track = sources[3].cpu() # index 3 = vocals
|
94 |
+
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
95 |
+
save_track(out_path, vocal_track, model.samplerate)
|
96 |
return out_path
|
97 |
|
98 |
+
# === Preset Loader ===
|
99 |
+
def load_presets():
|
100 |
+
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")]
|
101 |
+
presets = {}
|
102 |
+
for f in preset_files:
|
103 |
+
with open(os.path.join("presets", f)) as infile:
|
104 |
+
data = json.load(infile)
|
105 |
+
presets[data["name"]] = data["effects"]
|
106 |
+
return presets
|
107 |
+
|
108 |
+
preset_choices = load_presets()
|
109 |
+
|
110 |
+
# === Main Processing Function ===
|
111 |
+
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name):
|
112 |
audio = AudioSegment.from_file(audio_file)
|
|
|
113 |
|
114 |
effect_map = {
|
115 |
"Noise Reduction": apply_noise_reduction,
|
|
|
123 |
"Normalize": apply_normalize,
|
124 |
}
|
125 |
|
126 |
+
# Apply selected preset or custom effects
|
127 |
+
effects_to_apply = preset_choices.get(preset_name, selected_effects)
|
128 |
+
for effect_name in effects_to_apply:
|
129 |
if effect_name in effect_map:
|
130 |
audio = effect_map[effect_name](audio)
|
131 |
|
|
|
138 |
else:
|
139 |
final_audio = audio
|
140 |
|
141 |
+
output_path = f.name
|
142 |
+
final_audio.export(output_path, format="mp3")
|
143 |
+
return output_path
|
144 |
|
145 |
+
# === Gradio Interface ===
|
146 |
+
effect_options = [
|
147 |
"Noise Reduction",
|
148 |
"Compress Dynamic Range",
|
149 |
"Add Reverb",
|
|
|
155 |
"Normalize"
|
156 |
]
|
157 |
|
158 |
+
preset_names = list(preset_choices.keys())
|
159 |
+
|
160 |
interface = gr.Interface(
|
161 |
fn=process_audio,
|
162 |
inputs=[
|
163 |
gr.Audio(label="Upload Audio", type="filepath"),
|
164 |
+
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
|
165 |
+
gr.Checkbox(label="Isolate Vocals After Effects"),
|
166 |
+
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None)
|
167 |
],
|
168 |
+
outputs=gr.Audio(label="Processed Audio (MP3)", type="filepath"),
|
169 |
+
title="AI Audio Studio - Pro Edition",
|
170 |
+
description="Apply multiple effects, isolate vocals, and export polished tracks -- all powered by AI!",
|
171 |
allow_flagging="never"
|
172 |
)
|
173 |
|