Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Carregar o tokenizer e o modelo | |
tokenizer = AutoTokenizer.from_pretrained("Locutusque/gpt2-xl-conversational") | |
model = AutoModelForCausalLM.from_pretrained("Locutusque/gpt2-xl-conversational") | |
# Função para gerar respostas | |
def generate_response(prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.95): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
num_return_sequences=1 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Interface do Gradio | |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="GPT-2 Conversational") | |
if __name__ == "__main__": | |
iface.launch() | |