Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import torch
|
4 |
+
import uvicorn
|
5 |
+
import spacy
|
6 |
+
import pdfplumber
|
7 |
+
import moviepy.editor as mp
|
8 |
+
import librosa
|
9 |
+
import soundfile as sf
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import json
|
13 |
+
import tempfile
|
14 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
15 |
+
from fastapi.responses import FileResponse, JSONResponse
|
16 |
+
from fastapi.middleware.cors import CORSMiddleware
|
17 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
18 |
+
from sentence_transformers import SentenceTransformer
|
19 |
+
from pyngrok import ngrok
|
20 |
+
from threading import Thread
|
21 |
+
import time
|
22 |
+
import uuid
|
23 |
+
|
24 |
+
# Ensure compatibility with Google Colab (if applicable)
|
25 |
+
try:
|
26 |
+
from google.colab import drive
|
27 |
+
drive.mount('/content/drive')
|
28 |
+
except:
|
29 |
+
pass # Skip drive mount if not in Google Colab
|
30 |
+
|
31 |
+
# Ensure required directories exist
|
32 |
+
os.makedirs("static", exist_ok=True)
|
33 |
+
os.makedirs("temp", exist_ok=True)
|
34 |
+
|
35 |
+
# Ensure GPU usage
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
|
38 |
+
# Initialize FastAPI
|
39 |
+
app = FastAPI(title="Legal Document and Video Analyzer")
|
40 |
+
|
41 |
+
# Add CORS middleware
|
42 |
+
app.add_middleware(
|
43 |
+
CORSMiddleware,
|
44 |
+
allow_origins=["*"],
|
45 |
+
allow_credentials=True,
|
46 |
+
allow_methods=["*"],
|
47 |
+
allow_headers=["*"],
|
48 |
+
)
|
49 |
+
|
50 |
+
# Initialize document storage
|
51 |
+
document_storage = {}
|
52 |
+
chat_history = [] # Global chat history
|
53 |
+
|
54 |
+
# Function to store document context by task ID
|
55 |
+
def store_document_context(task_id, text):
|
56 |
+
"""Store document text for retrieval by chatbot."""
|
57 |
+
document_storage[task_id] = text
|
58 |
+
return True
|
59 |
+
|
60 |
+
# Function to load document context by task ID
|
61 |
+
def load_document_context(task_id):
|
62 |
+
"""Retrieve document text for chatbot context."""
|
63 |
+
return document_storage.get(task_id, "")
|
64 |
+
|
65 |
+
#############################
|
66 |
+
# Fine-tuning on CUAD QA #
|
67 |
+
#############################
|
68 |
+
|
69 |
+
def fine_tune_cuad_model():
|
70 |
+
"""
|
71 |
+
Fine tunes a question-answering model on the CUAD (Contract Understanding Atticus Dataset)
|
72 |
+
for detailed clause extraction. This demo function uses one epoch for demonstration;
|
73 |
+
adjust training parameters as needed.
|
74 |
+
"""
|
75 |
+
from datasets import load_dataset
|
76 |
+
import numpy as np
|
77 |
+
from transformers import Trainer, TrainingArguments
|
78 |
+
from transformers import AutoModelForQuestionAnswering
|
79 |
+
|
80 |
+
print("✅ Loading CUAD dataset for fine tuning...")
|
81 |
+
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
82 |
+
|
83 |
+
if "train" in dataset:
|
84 |
+
train_dataset = dataset["train"].select(range(1000))
|
85 |
+
if "validation" in dataset:
|
86 |
+
val_dataset = dataset["validation"].select(range(200))
|
87 |
+
else:
|
88 |
+
split = train_dataset.train_test_split(test_size=0.2)
|
89 |
+
train_dataset = split["train"]
|
90 |
+
val_dataset = split["test"]
|
91 |
+
else:
|
92 |
+
raise ValueError("CUAD dataset does not have a train split")
|
93 |
+
|
94 |
+
print("✅ Preparing training features...")
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
97 |
+
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
98 |
+
|
99 |
+
def prepare_train_features(examples):
|
100 |
+
tokenized_examples = tokenizer(
|
101 |
+
examples["question"],
|
102 |
+
examples["context"],
|
103 |
+
truncation="only_second",
|
104 |
+
max_length=384,
|
105 |
+
stride=128,
|
106 |
+
return_overflowing_tokens=True,
|
107 |
+
return_offsets_mapping=True,
|
108 |
+
padding="max_length",
|
109 |
+
)
|
110 |
+
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
|
111 |
+
offset_mapping = tokenized_examples.pop("offset_mapping")
|
112 |
+
tokenized_examples["start_positions"] = []
|
113 |
+
tokenized_examples["end_positions"] = []
|
114 |
+
for i, offsets in enumerate(offset_mapping):
|
115 |
+
input_ids = tokenized_examples["input_ids"][i]
|
116 |
+
cls_index = input_ids.index(tokenizer.cls_token_id)
|
117 |
+
sequence_ids = tokenized_examples.sequence_ids(i)
|
118 |
+
sample_index = sample_mapping[i]
|
119 |
+
answers = examples["answers"][sample_index]
|
120 |
+
if len(answers["answer_start"]) == 0:
|
121 |
+
tokenized_examples["start_positions"].append(cls_index)
|
122 |
+
tokenized_examples["end_positions"].append(cls_index)
|
123 |
+
else:
|
124 |
+
start_char = answers["answer_start"][0]
|
125 |
+
end_char = start_char + len(answers["text"][0])
|
126 |
+
tokenized_start_index = 0
|
127 |
+
while sequence_ids[tokenized_start_index] != 1:
|
128 |
+
tokenized_start_index += 1
|
129 |
+
tokenized_end_index = len(input_ids) - 1
|
130 |
+
while sequence_ids[tokenized_end_index] != 1:
|
131 |
+
tokenized_end_index -= 1
|
132 |
+
if not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
|
133 |
+
tokenized_examples["start_positions"].append(cls_index)
|
134 |
+
tokenized_examples["end_positions"].append(cls_index)
|
135 |
+
else:
|
136 |
+
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
|
137 |
+
tokenized_start_index += 1
|
138 |
+
tokenized_examples["start_positions"].append(tokenized_start_index - 1)
|
139 |
+
while offsets[tokenized_end_index][1] >= end_char:
|
140 |
+
tokenized_end_index -= 1
|
141 |
+
tokenized_examples["end_positions"].append(tokenized_end_index + 1)
|
142 |
+
return tokenized_examples
|
143 |
+
|
144 |
+
print("✅ Tokenizing dataset...")
|
145 |
+
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
146 |
+
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
147 |
+
|
148 |
+
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
149 |
+
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
150 |
+
|
151 |
+
training_args = TrainingArguments(
|
152 |
+
output_dir="./fine_tuned_legal_qa",
|
153 |
+
evaluation_strategy="steps",
|
154 |
+
eval_steps=100,
|
155 |
+
learning_rate=2e-5,
|
156 |
+
per_device_train_batch_size=16,
|
157 |
+
per_device_eval_batch_size=16,
|
158 |
+
num_train_epochs=1,
|
159 |
+
weight_decay=0.01,
|
160 |
+
logging_steps=50,
|
161 |
+
save_steps=100,
|
162 |
+
load_best_model_at_end=True,
|
163 |
+
report_to=[]
|
164 |
+
)
|
165 |
+
|
166 |
+
print("✅ Starting fine tuning on CUAD QA dataset...")
|
167 |
+
trainer = Trainer(
|
168 |
+
model=model,
|
169 |
+
args=training_args,
|
170 |
+
train_dataset=train_dataset,
|
171 |
+
eval_dataset=val_dataset,
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
)
|
174 |
+
|
175 |
+
trainer.train()
|
176 |
+
print("✅ Fine tuning completed. Saving model...")
|
177 |
+
|
178 |
+
model.save_pretrained("./fine_tuned_legal_qa")
|
179 |
+
tokenizer.save_pretrained("./fine_tuned_legal_qa")
|
180 |
+
|
181 |
+
return tokenizer, model
|
182 |
+
|
183 |
+
#############################
|
184 |
+
# Load NLP Models #
|
185 |
+
#############################
|
186 |
+
|
187 |
+
try:
|
188 |
+
try:
|
189 |
+
nlp = spacy.load("en_core_web_sm")
|
190 |
+
except:
|
191 |
+
spacy.cli.download("en_core_web_sm")
|
192 |
+
nlp = spacy.load("en_core_web_sm")
|
193 |
+
print("✅ Loading NLP models...")
|
194 |
+
|
195 |
+
summarizer = pipeline("summarization", model="nsi319/legal-pegasus",
|
196 |
+
device=0 if torch.cuda.is_available() else -1)
|
197 |
+
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
198 |
+
ner_model = pipeline("ner", model="dslim/bert-base-NER",
|
199 |
+
device=0 if torch.cuda.is_available() else -1)
|
200 |
+
speech_to_text = pipeline("automatic-speech-recognition",
|
201 |
+
model="openai/whisper-medium",
|
202 |
+
chunk_length_s=30,
|
203 |
+
device_map="auto" if torch.cuda.is_available() else "cpu")
|
204 |
+
|
205 |
+
# Load or Fine Tune CUAD QA Model
|
206 |
+
if os.path.exists("fine_tuned_legal_qa"):
|
207 |
+
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
208 |
+
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
209 |
+
from transformers import AutoModelForQuestionAnswering
|
210 |
+
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
|
211 |
+
cuad_model.to(device)
|
212 |
+
else:
|
213 |
+
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
|
214 |
+
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
|
215 |
+
cuad_model.to(device)
|
216 |
+
|
217 |
+
print("✅ All models loaded successfully")
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
print(f"⚠️ Error loading models: {str(e)}")
|
221 |
+
raise RuntimeError(f"Error loading models: {str(e)}")
|
222 |
+
|
223 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
224 |
+
|
225 |
+
def legal_chatbot(user_input, context):
|
226 |
+
"""Uses a real NLP model for legal Q&A."""
|
227 |
+
global chat_history
|
228 |
+
chat_history.append({"role": "user", "content": user_input})
|
229 |
+
response = qa_model(question=user_input, context=context)["answer"]
|
230 |
+
chat_history.append({"role": "assistant", "content": response})
|
231 |
+
return response
|
232 |
+
|
233 |
+
def extract_text_from_pdf(pdf_file):
|
234 |
+
"""Extracts text from a PDF file using pdfplumber."""
|
235 |
+
try:
|
236 |
+
with pdfplumber.open(pdf_file) as pdf:
|
237 |
+
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
238 |
+
return text.strip() if text else None
|
239 |
+
except Exception as e:
|
240 |
+
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
241 |
+
|
242 |
+
def process_video_to_text(video_file_path):
|
243 |
+
"""Extract audio from video and convert to text."""
|
244 |
+
try:
|
245 |
+
print(f"Processing video file at {video_file_path}")
|
246 |
+
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
247 |
+
video = mp.VideoFileClip(video_file_path)
|
248 |
+
video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
|
249 |
+
print(f"Audio extracted to {temp_audio_path}")
|
250 |
+
result = speech_to_text(temp_audio_path)
|
251 |
+
transcript = result["text"]
|
252 |
+
print(f"Transcription completed: {len(transcript)} characters")
|
253 |
+
if os.path.exists(temp_audio_path):
|
254 |
+
os.remove(temp_audio_path)
|
255 |
+
return transcript
|
256 |
+
except Exception as e:
|
257 |
+
print(f"Error in video processing: {str(e)}")
|
258 |
+
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
259 |
+
|
260 |
+
def process_audio_to_text(audio_file_path):
|
261 |
+
"""Process audio file and convert to text."""
|
262 |
+
try:
|
263 |
+
print(f"Processing audio file at {audio_file_path}")
|
264 |
+
result = speech_to_text(audio_file_path)
|
265 |
+
transcript = result["text"]
|
266 |
+
print(f"Transcription completed: {len(transcript)} characters")
|
267 |
+
return transcript
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Error in audio processing: {str(e)}")
|
270 |
+
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
271 |
+
|
272 |
+
def extract_named_entities(text):
|
273 |
+
"""Extracts named entities from legal text."""
|
274 |
+
max_length = 10000
|
275 |
+
entities = []
|
276 |
+
for i in range(0, len(text), max_length):
|
277 |
+
chunk = text[i:i+max_length]
|
278 |
+
doc = nlp(chunk)
|
279 |
+
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
280 |
+
return entities
|
281 |
+
|
282 |
+
def analyze_risk(text):
|
283 |
+
"""Analyzes legal risk in the document using keyword-based analysis."""
|
284 |
+
risk_keywords = {
|
285 |
+
"Liability": ["liability", "responsible", "responsibility", "legal obligation"],
|
286 |
+
"Termination": ["termination", "breach", "contract end", "default"],
|
287 |
+
"Indemnification": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"],
|
288 |
+
"Payment Risk": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"],
|
289 |
+
"Insurance": ["insurance", "coverage", "policy", "claims"],
|
290 |
+
}
|
291 |
+
risk_scores = {category: 0 for category in risk_keywords}
|
292 |
+
lower_text = text.lower()
|
293 |
+
for category, keywords in risk_keywords.items():
|
294 |
+
for keyword in keywords:
|
295 |
+
risk_scores[category] += lower_text.count(keyword.lower())
|
296 |
+
return risk_scores
|
297 |
+
|
298 |
+
def extract_context_for_risk_terms(text, risk_keywords, window=1):
|
299 |
+
"""
|
300 |
+
Extracts and summarizes the context around risk terms.
|
301 |
+
"""
|
302 |
+
doc = nlp(text)
|
303 |
+
sentences = list(doc.sents)
|
304 |
+
risk_contexts = {category: [] for category in risk_keywords}
|
305 |
+
for i, sent in enumerate(sentences):
|
306 |
+
sent_text_lower = sent.text.lower()
|
307 |
+
for category, details in risk_keywords.items():
|
308 |
+
for keyword in details["keywords"]:
|
309 |
+
if keyword.lower() in sent_text_lower:
|
310 |
+
start_idx = max(0, i - window)
|
311 |
+
end_idx = min(len(sentences), i + window + 1)
|
312 |
+
context_chunk = " ".join([s.text for s in sentences[start_idx:end_idx]])
|
313 |
+
risk_contexts[category].append(context_chunk)
|
314 |
+
summarized_contexts = {}
|
315 |
+
for category, contexts in risk_contexts.items():
|
316 |
+
if contexts:
|
317 |
+
combined_context = " ".join(contexts)
|
318 |
+
try:
|
319 |
+
summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False)
|
320 |
+
summary = summary_result[0]['summary_text']
|
321 |
+
except Exception as e:
|
322 |
+
summary = "Context summarization failed."
|
323 |
+
summarized_contexts[category] = summary
|
324 |
+
else:
|
325 |
+
summarized_contexts[category] = "No contextual details found."
|
326 |
+
return summarized_contexts
|
327 |
+
|
328 |
+
def get_detailed_risk_info(text):
|
329 |
+
"""
|
330 |
+
Returns detailed risk information by merging risk scores with descriptive details
|
331 |
+
and contextual summaries from the document.
|
332 |
+
"""
|
333 |
+
risk_details = {
|
334 |
+
"Liability": {
|
335 |
+
"description": "Liability refers to the legal responsibility for losses or damages.",
|
336 |
+
"common_concerns": "Broad liability clauses may expose parties to unforeseen risks.",
|
337 |
+
"recommendations": "Review and negotiate clear limits on liability.",
|
338 |
+
"example": "E.g., 'The party shall be liable for direct damages due to negligence.'"
|
339 |
+
},
|
340 |
+
"Termination": {
|
341 |
+
"description": "Termination involves conditions under which a contract can be ended.",
|
342 |
+
"common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.",
|
343 |
+
"recommendations": "Ensure termination clauses are balanced and include notice periods.",
|
344 |
+
"example": "E.g., 'Either party may terminate the agreement with 30 days notice.'"
|
345 |
+
},
|
346 |
+
"Indemnification": {
|
347 |
+
"description": "Indemnification requires one party to compensate for losses incurred by the other.",
|
348 |
+
"common_concerns": "Overly broad indemnification can shift significant risk.",
|
349 |
+
"recommendations": "Negotiate clear limits and carve-outs where necessary.",
|
350 |
+
"example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'"
|
351 |
+
},
|
352 |
+
"Payment Risk": {
|
353 |
+
"description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.",
|
354 |
+
"common_concerns": "Vague payment terms or hidden charges increase risk.",
|
355 |
+
"recommendations": "Clarify payment conditions and include penalties for delays.",
|
356 |
+
"example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'"
|
357 |
+
},
|
358 |
+
"Insurance": {
|
359 |
+
"description": "Insurance risk covers the adequacy and scope of required coverage.",
|
360 |
+
"common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.",
|
361 |
+
"recommendations": "Review insurance requirements to ensure they meet the risk profile.",
|
362 |
+
"example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'"
|
363 |
+
}
|
364 |
+
}
|
365 |
+
risk_scores = analyze_risk(text)
|
366 |
+
risk_keywords_context = {
|
367 |
+
"Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]},
|
368 |
+
"Termination": {"keywords": ["termination", "breach", "contract end", "default"]},
|
369 |
+
"Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]},
|
370 |
+
"Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]},
|
371 |
+
"Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]}
|
372 |
+
}
|
373 |
+
risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1)
|
374 |
+
detailed_info = {}
|
375 |
+
for risk_term, score in risk_scores.items():
|
376 |
+
if score > 0:
|
377 |
+
info = risk_details.get(risk_term, {"description": "No details available."})
|
378 |
+
detailed_info[risk_term] = {
|
379 |
+
"score": score,
|
380 |
+
"description": info.get("description", ""),
|
381 |
+
"common_concerns": info.get("common_concerns", ""),
|
382 |
+
"recommendations": info.get("recommendations", ""),
|
383 |
+
"example": info.get("example", ""),
|
384 |
+
"context_summary": risk_contexts.get(risk_term, "No context available.")
|
385 |
+
}
|
386 |
+
return detailed_info
|
387 |
+
|
388 |
+
def analyze_contract_clauses(text):
|
389 |
+
"""Analyzes contract clauses using the fine-tuned CUAD QA model."""
|
390 |
+
max_length = 512
|
391 |
+
step = 256
|
392 |
+
clauses_detected = []
|
393 |
+
try:
|
394 |
+
clause_types = list(cuad_model.config.id2label.values())
|
395 |
+
except Exception as e:
|
396 |
+
clause_types = [
|
397 |
+
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
|
398 |
+
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
|
399 |
+
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
400 |
+
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
401 |
+
]
|
402 |
+
chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
|
403 |
+
for chunk in chunks:
|
404 |
+
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
|
405 |
+
with torch.no_grad():
|
406 |
+
outputs = cuad_model(**inputs)
|
407 |
+
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
408 |
+
for idx, confidence in enumerate(predictions):
|
409 |
+
if confidence > 0.5 and idx < len(clause_types):
|
410 |
+
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
|
411 |
+
aggregated_clauses = {}
|
412 |
+
for clause in clauses_detected:
|
413 |
+
clause_type = clause["type"]
|
414 |
+
if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
|
415 |
+
aggregated_clauses[clause_type] = clause
|
416 |
+
return list(aggregated_clauses.values())
|
417 |
+
|
418 |
+
@app.post("/analyze_legal_document")
|
419 |
+
async def analyze_legal_document(file: UploadFile = File(...)):
|
420 |
+
"""Analyzes a legal document for clause detection and compliance risks."""
|
421 |
+
try:
|
422 |
+
print(f"Processing file: {file.filename}")
|
423 |
+
content = await file.read()
|
424 |
+
text = extract_text_from_pdf(io.BytesIO(content))
|
425 |
+
if not text:
|
426 |
+
return {"status": "error", "message": "No valid text found in the document."}
|
427 |
+
summary_text = text[:4096] if len(text) > 4096 else text
|
428 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
|
429 |
+
print("Extracting named entities...")
|
430 |
+
entities = extract_named_entities(text)
|
431 |
+
print("Analyzing risk...")
|
432 |
+
risk_scores = analyze_risk(text)
|
433 |
+
detailed_risk = get_detailed_risk_info(text)
|
434 |
+
print("Analyzing contract clauses...")
|
435 |
+
clauses = analyze_contract_clauses(text)
|
436 |
+
generated_task_id = str(uuid.uuid4())
|
437 |
+
store_document_context(generated_task_id, text)
|
438 |
+
return {
|
439 |
+
"status": "success",
|
440 |
+
"task_id": generated_task_id,
|
441 |
+
"summary": summary,
|
442 |
+
"named_entities": entities,
|
443 |
+
"risk_scores": risk_scores,
|
444 |
+
"detailed_risk": detailed_risk,
|
445 |
+
"clauses_detected": clauses
|
446 |
+
}
|
447 |
+
except Exception as e:
|
448 |
+
print(f"Error processing document: {str(e)}")
|
449 |
+
return {"status": "error", "message": str(e)}
|
450 |
+
|
451 |
+
@app.post("/analyze_legal_video")
|
452 |
+
async def analyze_legal_video(file: UploadFile = File(...)):
|
453 |
+
"""Analyzes a legal video by transcribing audio and analyzing the transcript."""
|
454 |
+
try:
|
455 |
+
print(f"Processing video file: {file.filename}")
|
456 |
+
content = await file.read()
|
457 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
458 |
+
temp_file.write(content)
|
459 |
+
temp_file_path = temp_file.name
|
460 |
+
print(f"Temporary file saved at: {temp_file_path}")
|
461 |
+
text = process_video_to_text(temp_file_path)
|
462 |
+
if os.path.exists(temp_file_path):
|
463 |
+
os.remove(temp_file_path)
|
464 |
+
if not text:
|
465 |
+
return {"status": "error", "message": "No speech could be transcribed from the video."}
|
466 |
+
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
467 |
+
with open(transcript_path, "w") as f:
|
468 |
+
f.write(text)
|
469 |
+
summary_text = text[:4096] if len(text) > 4096 else text
|
470 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
471 |
+
print("Extracting named entities from transcript...")
|
472 |
+
entities = extract_named_entities(text)
|
473 |
+
print("Analyzing risk from transcript...")
|
474 |
+
risk_scores = analyze_risk(text)
|
475 |
+
detailed_risk = get_detailed_risk_info(text)
|
476 |
+
print("Analyzing legal clauses from transcript...")
|
477 |
+
clauses = analyze_contract_clauses(text)
|
478 |
+
generated_task_id = str(uuid.uuid4())
|
479 |
+
store_document_context(generated_task_id, text)
|
480 |
+
return {
|
481 |
+
"status": "success",
|
482 |
+
"task_id": generated_task_id,
|
483 |
+
"transcript": text,
|
484 |
+
"transcript_path": transcript_path,
|
485 |
+
"summary": summary,
|
486 |
+
"named_entities": entities,
|
487 |
+
"risk_scores": risk_scores,
|
488 |
+
"detailed_risk": detailed_risk,
|
489 |
+
"clauses_detected": clauses
|
490 |
+
}
|
491 |
+
except Exception as e:
|
492 |
+
print(f"Error processing video: {str(e)}")
|
493 |
+
return {"status": "error", "message": str(e)}
|
494 |
+
|
495 |
+
@app.post("/analyze_legal_audio")
|
496 |
+
async def analyze_legal_audio(file: UploadFile = File(...)):
|
497 |
+
"""Analyzes legal audio by transcribing and analyzing the transcript."""
|
498 |
+
try:
|
499 |
+
print(f"Processing audio file: {file.filename}")
|
500 |
+
content = await file.read()
|
501 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
|
502 |
+
temp_file.write(content)
|
503 |
+
temp_file_path = temp_file.name
|
504 |
+
print(f"Temporary file saved at: {temp_file_path}")
|
505 |
+
text = process_audio_to_text(temp_file_path)
|
506 |
+
if os.path.exists(temp_file_path):
|
507 |
+
os.remove(temp_file_path)
|
508 |
+
if not text:
|
509 |
+
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
510 |
+
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
|
511 |
+
with open(transcript_path, "w") as f:
|
512 |
+
f.write(text)
|
513 |
+
summary_text = text[:4096] if len(text) > 4096 else text
|
514 |
+
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
|
515 |
+
print("Extracting named entities from transcript...")
|
516 |
+
entities = extract_named_entities(text)
|
517 |
+
print("Analyzing risk from transcript...")
|
518 |
+
risk_scores = analyze_risk(text)
|
519 |
+
detailed_risk = get_detailed_risk_info(text)
|
520 |
+
print("Analyzing legal clauses from transcript...")
|
521 |
+
clauses = analyze_contract_clauses(text)
|
522 |
+
generated_task_id = str(uuid.uuid4())
|
523 |
+
store_document_context(generated_task_id, text)
|
524 |
+
return {
|
525 |
+
"status": "success",
|
526 |
+
"task_id": generated_task_id,
|
527 |
+
"transcript": text,
|
528 |
+
"transcript_path": transcript_path,
|
529 |
+
"summary": summary,
|
530 |
+
"named_entities": entities,
|
531 |
+
"risk_scores": risk_scores,
|
532 |
+
"detailed_risk": detailed_risk,
|
533 |
+
"clauses_detected": clauses
|
534 |
+
}
|
535 |
+
except Exception as e:
|
536 |
+
print(f"Error processing audio: {str(e)}")
|
537 |
+
return {"status": "error", "message": str(e)}
|
538 |
+
|
539 |
+
@app.get("/transcript/{transcript_id}")
|
540 |
+
async def get_transcript(transcript_id: str):
|
541 |
+
"""Retrieves a previously generated transcript."""
|
542 |
+
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
|
543 |
+
if os.path.exists(transcript_path):
|
544 |
+
return FileResponse(transcript_path)
|
545 |
+
else:
|
546 |
+
raise HTTPException(status_code=404, detail="Transcript not found")
|
547 |
+
|
548 |
+
@app.post("/legal_chatbot")
|
549 |
+
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
|
550 |
+
"""Handles legal Q&A using chat history and document context."""
|
551 |
+
document_context = load_document_context(task_id)
|
552 |
+
if not document_context:
|
553 |
+
return {"response": "⚠️ No relevant document found for this task ID."}
|
554 |
+
response = legal_chatbot(query, document_context)
|
555 |
+
return {"response": response, "chat_history": chat_history[-5:]}
|
556 |
+
|
557 |
+
@app.get("/health")
|
558 |
+
async def health_check():
|
559 |
+
return {
|
560 |
+
"status": "ok",
|
561 |
+
"models_loaded": True,
|
562 |
+
"device": device,
|
563 |
+
"gpu_available": torch.cuda.is_available(),
|
564 |
+
"timestamp": time.time()
|
565 |
+
}
|
566 |
+
|
567 |
+
def setup_ngrok():
|
568 |
+
"""Sets up ngrok tunnel for Google Colab."""
|
569 |
+
try:
|
570 |
+
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
|
571 |
+
if auth_token:
|
572 |
+
ngrok.set_auth_token(auth_token)
|
573 |
+
ngrok.kill()
|
574 |
+
time.sleep(1)
|
575 |
+
ngrok_tunnel = ngrok.connect(8500, "http")
|
576 |
+
public_url = ngrok_tunnel.public_url
|
577 |
+
print(f"✅ Ngrok Public URL: {public_url}")
|
578 |
+
def keep_alive():
|
579 |
+
while True:
|
580 |
+
time.sleep(60)
|
581 |
+
try:
|
582 |
+
tunnels = ngrok.get_tunnels()
|
583 |
+
if not tunnels:
|
584 |
+
print("⚠️ Ngrok tunnel closed. Reconnecting...")
|
585 |
+
ngrok_tunnel = ngrok.connect(8500, "http")
|
586 |
+
print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
|
587 |
+
except Exception as e:
|
588 |
+
print(f"⚠️ Ngrok error: {e}")
|
589 |
+
Thread(target=keep_alive, daemon=True).start()
|
590 |
+
return public_url
|
591 |
+
except Exception as e:
|
592 |
+
print(f"⚠️ Ngrok setup error: {e}")
|
593 |
+
return None
|
594 |
+
|
595 |
+
@app.get("/download_risk_chart")
|
596 |
+
async def download_risk_chart():
|
597 |
+
"""Generate and return a risk assessment chart as an image file."""
|
598 |
+
try:
|
599 |
+
os.makedirs("static", exist_ok=True)
|
600 |
+
risk_scores = {
|
601 |
+
"Liability": 11,
|
602 |
+
"Termination": 12,
|
603 |
+
"Indemnification": 10,
|
604 |
+
"Payment Risk": 41,
|
605 |
+
"Insurance": 71
|
606 |
+
}
|
607 |
+
plt.figure(figsize=(8, 5))
|
608 |
+
plt.bar(risk_scores.keys(), risk_scores.values(), color='red')
|
609 |
+
plt.xlabel("Risk Categories")
|
610 |
+
plt.ylabel("Risk Score")
|
611 |
+
plt.title("Legal Risk Assessment")
|
612 |
+
plt.xticks(rotation=30)
|
613 |
+
risk_chart_path = "static/risk_chart.png"
|
614 |
+
plt.savefig(risk_chart_path)
|
615 |
+
plt.close()
|
616 |
+
return FileResponse(risk_chart_path, media_type="image/png", filename="risk_chart.png")
|
617 |
+
except Exception as e:
|
618 |
+
raise HTTPException(status_code=500, detail=f"Error generating risk chart: {str(e)}")
|
619 |
+
|
620 |
+
@app.get("/download_risk_pie_chart")
|
621 |
+
async def download_risk_pie_chart():
|
622 |
+
try:
|
623 |
+
risk_scores = {
|
624 |
+
"Liability": 11,
|
625 |
+
"Termination": 12,
|
626 |
+
"Indemnification": 10,
|
627 |
+
"Payment Risk": 41,
|
628 |
+
"Insurance": 71
|
629 |
+
}
|
630 |
+
plt.figure(figsize=(6, 6))
|
631 |
+
plt.pie(risk_scores.values(), labels=risk_scores.keys(), autopct='%1.1f%%', startangle=90)
|
632 |
+
plt.title("Legal Risk Distribution")
|
633 |
+
pie_chart_path = "static/risk_pie_chart.png"
|
634 |
+
plt.savefig(pie_chart_path)
|
635 |
+
plt.close()
|
636 |
+
return FileResponse(pie_chart_path, media_type="image/png", filename="risk_pie_chart.png")
|
637 |
+
except Exception as e:
|
638 |
+
raise HTTPException(status_code=500, detail=f"Error generating pie chart: {str(e)}")
|
639 |
+
|
640 |
+
@app.get("/download_risk_radar_chart")
|
641 |
+
async def download_risk_radar_chart():
|
642 |
+
try:
|
643 |
+
risk_scores = {
|
644 |
+
"Liability": 11,
|
645 |
+
"Termination": 12,
|
646 |
+
"Indemnification": 10,
|
647 |
+
"Payment Risk": 41,
|
648 |
+
"Insurance": 71
|
649 |
+
}
|
650 |
+
categories = list(risk_scores.keys())
|
651 |
+
values = list(risk_scores.values())
|
652 |
+
categories += categories[:1]
|
653 |
+
values += values[:1]
|
654 |
+
angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
|
655 |
+
angles += angles[:1]
|
656 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
657 |
+
ax.plot(angles, values, 'o-', linewidth=2)
|
658 |
+
ax.fill(angles, values, alpha=0.25)
|
659 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories)
|
660 |
+
ax.set_title("Legal Risk Radar Chart", y=1.1)
|
661 |
+
radar_chart_path = "static/risk_radar_chart.png"
|
662 |
+
plt.savefig(radar_chart_path)
|
663 |
+
plt.close()
|
664 |
+
return FileResponse(radar_chart_path, media_type="image/png", filename="risk_radar_chart.png")
|
665 |
+
except Exception as e:
|
666 |
+
raise HTTPException(status_code=500, detail=f"Error generating radar chart: {str(e)}")
|
667 |
+
|
668 |
+
@app.get("/download_risk_trend_chart")
|
669 |
+
async def download_risk_trend_chart():
|
670 |
+
try:
|
671 |
+
dates = ["2025-01-01", "2025-02-01", "2025-03-01", "2025-04-01"]
|
672 |
+
risk_history = {
|
673 |
+
"Liability": [10, 12, 11, 13],
|
674 |
+
"Termination": [12, 15, 14, 13],
|
675 |
+
"Indemnification": [9, 10, 11, 10],
|
676 |
+
"Payment Risk": [40, 42, 41, 43],
|
677 |
+
"Insurance": [70, 69, 71, 72]
|
678 |
+
}
|
679 |
+
plt.figure(figsize=(10, 6))
|
680 |
+
for category, scores in risk_history.items():
|
681 |
+
plt.plot(dates, scores, marker='o', label=category)
|
682 |
+
plt.xlabel("Date")
|
683 |
+
plt.ylabel("Risk Score")
|
684 |
+
plt.title("Historical Legal Risk Trends")
|
685 |
+
plt.xticks(rotation=45)
|
686 |
+
plt.legend()
|
687 |
+
trend_chart_path = "static/risk_trend_chart.png"
|
688 |
+
plt.savefig(trend_chart_path, bbox_inches="tight")
|
689 |
+
plt.close()
|
690 |
+
return FileResponse(trend_chart_path, media_type="image/png", filename="risk_trend_chart.png")
|
691 |
+
except Exception as e:
|
692 |
+
raise HTTPException(status_code=500, detail=f"Error generating trend chart: {str(e)}")
|
693 |
+
|
694 |
+
import pandas as pd
|
695 |
+
import plotly.express as px
|
696 |
+
from fastapi.responses import HTMLResponse
|
697 |
+
|
698 |
+
@app.get("/interactive_risk_chart", response_class=HTMLResponse)
|
699 |
+
async def interactive_risk_chart():
|
700 |
+
try:
|
701 |
+
risk_scores = {
|
702 |
+
"Liability": 11,
|
703 |
+
"Termination": 12,
|
704 |
+
"Indemnification": 10,
|
705 |
+
"Payment Risk": 41,
|
706 |
+
"Insurance": 71
|
707 |
+
}
|
708 |
+
df = pd.DataFrame({
|
709 |
+
"Risk Category": list(risk_scores.keys()),
|
710 |
+
"Risk Score": list(risk_scores.values())
|
711 |
+
})
|
712 |
+
fig = px.bar(df, x="Risk Category", y="Risk Score", title="Interactive Legal Risk Assessment")
|
713 |
+
return fig.to_html()
|
714 |
+
except Exception as e:
|
715 |
+
raise HTTPException(status_code=500, detail=f"Error generating interactive chart: {str(e)}")
|
716 |
+
|
717 |
+
def run():
|
718 |
+
"""Starts the FastAPI server."""
|
719 |
+
print("Starting FastAPI server...")
|
720 |
+
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
public_url = setup_ngrok()
|
724 |
+
if public_url:
|
725 |
+
print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
|
726 |
+
else:
|
727 |
+
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
|
728 |
+
run()
|