Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import io
|
3 |
import torch
|
4 |
import uvicorn
|
5 |
import spacy
|
6 |
-
import subprocess # For running ffmpeg commands
|
7 |
import pdfplumber
|
|
|
8 |
import librosa
|
9 |
import soundfile as sf
|
10 |
import matplotlib.pyplot as plt
|
@@ -21,21 +23,21 @@ from threading import Thread
|
|
21 |
import time
|
22 |
import uuid
|
23 |
|
24 |
-
# Ensure compatibility with Google Colab
|
25 |
try:
|
26 |
from google.colab import drive
|
27 |
drive.mount('/content/drive')
|
28 |
except:
|
29 |
pass # Skip drive mount if not in Google Colab
|
30 |
|
31 |
-
# Ensure required directories exist
|
32 |
os.makedirs("static", exist_ok=True)
|
33 |
os.makedirs("temp", exist_ok=True)
|
34 |
|
35 |
-
# Ensure GPU usage
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
|
38 |
-
# Initialize FastAPI
|
39 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
40 |
|
41 |
# Add CORS middleware
|
@@ -47,17 +49,17 @@ app.add_middleware(
|
|
47 |
allow_headers=["*"],
|
48 |
)
|
49 |
|
50 |
-
# Initialize document storage
|
51 |
document_storage = {}
|
52 |
-
chat_history = [] #
|
53 |
|
54 |
-
# Function to store document context by task ID
|
55 |
def store_document_context(task_id, text):
|
56 |
"""Store document text for retrieval by chatbot."""
|
57 |
document_storage[task_id] = text
|
58 |
return True
|
59 |
|
60 |
-
# Function to load document context by task ID
|
61 |
def load_document_context(task_id):
|
62 |
"""Retrieve document text for chatbot context."""
|
63 |
return document_storage.get(task_id, "")
|
@@ -74,14 +76,20 @@ def fine_tune_cuad_model():
|
|
74 |
"""
|
75 |
from datasets import load_dataset
|
76 |
import numpy as np
|
|
|
77 |
from transformers import Trainer, TrainingArguments
|
78 |
from transformers import AutoModelForQuestionAnswering
|
79 |
|
80 |
print("β
Loading CUAD dataset for fine tuning...")
|
|
|
81 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
82 |
|
|
|
83 |
if "train" in dataset:
|
|
|
84 |
train_dataset = dataset["train"].select(range(1000))
|
|
|
|
|
85 |
if "validation" in dataset:
|
86 |
val_dataset = dataset["validation"].select(range(200))
|
87 |
else:
|
@@ -93,10 +101,12 @@ def fine_tune_cuad_model():
|
|
93 |
|
94 |
print("β
Preparing training features...")
|
95 |
|
|
|
96 |
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
97 |
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
98 |
|
99 |
def prepare_train_features(examples):
|
|
|
100 |
tokenized_examples = tokenizer(
|
101 |
examples["question"],
|
102 |
examples["context"],
|
@@ -145,9 +155,11 @@ def fine_tune_cuad_model():
|
|
145 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
146 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
147 |
|
|
|
148 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
149 |
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
150 |
|
|
|
151 |
training_args = TrainingArguments(
|
152 |
output_dir="./fine_tuned_legal_qa",
|
153 |
evaluation_strategy="steps",
|
@@ -160,11 +172,11 @@ def fine_tune_cuad_model():
|
|
160 |
logging_steps=50,
|
161 |
save_steps=100,
|
162 |
load_best_model_at_end=True,
|
163 |
-
report_to=[]
|
164 |
)
|
165 |
|
166 |
print("β
Starting fine tuning on CUAD QA dataset...")
|
167 |
-
from transformers import Trainer
|
168 |
trainer = Trainer(
|
169 |
model=model,
|
170 |
args=training_args,
|
@@ -193,23 +205,24 @@ try:
|
|
193 |
nlp = spacy.load("en_core_web_sm")
|
194 |
print("β
Loading NLP models...")
|
195 |
|
196 |
-
# Updated summarizer
|
|
|
197 |
summarizer = pipeline(
|
198 |
"summarization",
|
199 |
model="nsi319/legal-pegasus",
|
200 |
-
|
201 |
-
use_fast=False,
|
202 |
device=0 if torch.cuda.is_available() else -1
|
203 |
)
|
|
|
204 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
205 |
ner_model = pipeline("ner", model="dslim/bert-base-NER",
|
206 |
-
|
207 |
speech_to_text = pipeline("automatic-speech-recognition",
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
|
212 |
-
# Load or Fine Tune CUAD QA Model
|
213 |
if os.path.exists("fine_tuned_legal_qa"):
|
214 |
print("β
Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
215 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
@@ -227,6 +240,8 @@ except Exception as e:
|
|
227 |
print(f"β οΈ Error loading models: {str(e)}")
|
228 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
229 |
|
|
|
|
|
230 |
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
231 |
|
232 |
def legal_chatbot(user_input, context):
|
@@ -247,21 +262,12 @@ def extract_text_from_pdf(pdf_file):
|
|
247 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
248 |
|
249 |
def process_video_to_text(video_file_path):
|
250 |
-
"""Extract audio from video
|
251 |
try:
|
252 |
print(f"Processing video file at {video_file_path}")
|
253 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
254 |
-
|
255 |
-
|
256 |
-
"-y",
|
257 |
-
"-i", video_file_path,
|
258 |
-
"-vn",
|
259 |
-
"-acodec", "pcm_s16le",
|
260 |
-
"-ar", "44100",
|
261 |
-
"-ac", "2",
|
262 |
-
temp_audio_path
|
263 |
-
]
|
264 |
-
subprocess.run(command, check=True)
|
265 |
print(f"Audio extracted to {temp_audio_path}")
|
266 |
result = speech_to_text(temp_audio_path)
|
267 |
transcript = result["text"]
|
@@ -420,7 +426,7 @@ def analyze_contract_clauses(text):
|
|
420 |
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
|
421 |
with torch.no_grad():
|
422 |
outputs = cuad_model(**inputs)
|
423 |
-
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
424 |
for idx, confidence in enumerate(predictions):
|
425 |
if confidence > 0.5 and idx < len(clause_types):
|
426 |
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
|
@@ -519,7 +525,7 @@ async def analyze_legal_audio(file: UploadFile = File(...)):
|
|
519 |
temp_file_path = temp_file.name
|
520 |
print(f"Temporary file saved at: {temp_file_path}")
|
521 |
text = process_audio_to_text(temp_file_path)
|
522 |
-
if os.path.exists(
|
523 |
os.remove(temp_file_path)
|
524 |
if not text:
|
525 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
@@ -608,6 +614,8 @@ def setup_ngrok():
|
|
608 |
print(f"β οΈ Ngrok setup error: {e}")
|
609 |
return None
|
610 |
|
|
|
|
|
611 |
@app.get("/download_risk_chart")
|
612 |
async def download_risk_chart():
|
613 |
"""Generate and return a risk assessment chart as an image file."""
|
@@ -742,5 +750,3 @@ if __name__ == "__main__":
|
|
742 |
else:
|
743 |
print("\nβ οΈ Ngrok setup failed. API will only be available locally.\n")
|
744 |
run()
|
745 |
-
|
746 |
-
|
|
|
1 |
+
%%writefile app.py
|
2 |
+
|
3 |
import os
|
4 |
import io
|
5 |
import torch
|
6 |
import uvicorn
|
7 |
import spacy
|
|
|
8 |
import pdfplumber
|
9 |
+
import moviepy.editor as mp
|
10 |
import librosa
|
11 |
import soundfile as sf
|
12 |
import matplotlib.pyplot as plt
|
|
|
23 |
import time
|
24 |
import uuid
|
25 |
|
26 |
+
# β
Ensure compatibility with Google Colab
|
27 |
try:
|
28 |
from google.colab import drive
|
29 |
drive.mount('/content/drive')
|
30 |
except:
|
31 |
pass # Skip drive mount if not in Google Colab
|
32 |
|
33 |
+
# β
Ensure required directories exist
|
34 |
os.makedirs("static", exist_ok=True)
|
35 |
os.makedirs("temp", exist_ok=True)
|
36 |
|
37 |
+
# β
Ensure GPU usage
|
38 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
|
40 |
+
# β
Initialize FastAPI
|
41 |
app = FastAPI(title="Legal Document and Video Analyzer")
|
42 |
|
43 |
# Add CORS middleware
|
|
|
49 |
allow_headers=["*"],
|
50 |
)
|
51 |
|
52 |
+
# β
Initialize document storage
|
53 |
document_storage = {}
|
54 |
+
chat_history = [] # β
Added global chat history
|
55 |
|
56 |
+
# β
Function to store document context by task ID
|
57 |
def store_document_context(task_id, text):
|
58 |
"""Store document text for retrieval by chatbot."""
|
59 |
document_storage[task_id] = text
|
60 |
return True
|
61 |
|
62 |
+
# β
Function to load document context by task ID
|
63 |
def load_document_context(task_id):
|
64 |
"""Retrieve document text for chatbot context."""
|
65 |
return document_storage.get(task_id, "")
|
|
|
76 |
"""
|
77 |
from datasets import load_dataset
|
78 |
import numpy as np
|
79 |
+
# Optionally, load a metric (here we leave metrics out for brevity)
|
80 |
from transformers import Trainer, TrainingArguments
|
81 |
from transformers import AutoModelForQuestionAnswering
|
82 |
|
83 |
print("β
Loading CUAD dataset for fine tuning...")
|
84 |
+
# Load the CUAD QA dataset (SQuAD-style) with custom code allowed
|
85 |
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
|
86 |
|
87 |
+
# Use the train split with a larger subset for production fine tuning
|
88 |
if "train" in dataset:
|
89 |
+
# Select a larger subset for training, e.g., 1000 examples
|
90 |
train_dataset = dataset["train"].select(range(1000))
|
91 |
+
|
92 |
+
# For validation, you might select around 200 examples
|
93 |
if "validation" in dataset:
|
94 |
val_dataset = dataset["validation"].select(range(200))
|
95 |
else:
|
|
|
101 |
|
102 |
print("β
Preparing training features...")
|
103 |
|
104 |
+
# Load a QA model and its tokenizer. Here we use deepset/roberta-base-squad2.
|
105 |
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
106 |
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
107 |
|
108 |
def prepare_train_features(examples):
|
109 |
+
# Tokenize with question and context; use truncation only on the context.
|
110 |
tokenized_examples = tokenizer(
|
111 |
examples["question"],
|
112 |
examples["context"],
|
|
|
155 |
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
|
156 |
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
|
157 |
|
158 |
+
# Set format for PyTorch QA training
|
159 |
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
160 |
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
161 |
|
162 |
+
# For QA tasks, computing metrics can be more complex; here we skip metrics for brevity.
|
163 |
training_args = TrainingArguments(
|
164 |
output_dir="./fine_tuned_legal_qa",
|
165 |
evaluation_strategy="steps",
|
|
|
172 |
logging_steps=50,
|
173 |
save_steps=100,
|
174 |
load_best_model_at_end=True,
|
175 |
+
report_to=[] # Disables wandb logging to avoid related issues
|
176 |
)
|
177 |
|
178 |
print("β
Starting fine tuning on CUAD QA dataset...")
|
179 |
+
from transformers import Trainer
|
180 |
trainer = Trainer(
|
181 |
model=model,
|
182 |
args=training_args,
|
|
|
205 |
nlp = spacy.load("en_core_web_sm")
|
206 |
print("β
Loading NLP models...")
|
207 |
|
208 |
+
# Updated summarizer initialization with a slow tokenizer
|
209 |
+
from transformers import AutoTokenizer
|
210 |
summarizer = pipeline(
|
211 |
"summarization",
|
212 |
model="nsi319/legal-pegasus",
|
213 |
+
tokenizer=AutoTokenizer.from_pretrained("nsi319/legal-pegasus", use_fast=False),
|
|
|
214 |
device=0 if torch.cuda.is_available() else -1
|
215 |
)
|
216 |
+
|
217 |
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
218 |
ner_model = pipeline("ner", model="dslim/bert-base-NER",
|
219 |
+
device=0 if torch.cuda.is_available() else -1)
|
220 |
speech_to_text = pipeline("automatic-speech-recognition",
|
221 |
+
model="openai/whisper-medium",
|
222 |
+
chunk_length_s=30,
|
223 |
+
device_map="auto" if torch.cuda.is_available() else "cpu")
|
224 |
|
225 |
+
# β
Load or Fine Tune CUAD QA Model
|
226 |
if os.path.exists("fine_tuned_legal_qa"):
|
227 |
print("β
Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
|
228 |
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
|
|
|
240 |
print(f"β οΈ Error loading models: {str(e)}")
|
241 |
raise RuntimeError(f"Error loading models: {str(e)}")
|
242 |
|
243 |
+
from transformers import pipeline
|
244 |
+
|
245 |
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
246 |
|
247 |
def legal_chatbot(user_input, context):
|
|
|
262 |
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
263 |
|
264 |
def process_video_to_text(video_file_path):
|
265 |
+
"""Extract audio from video and convert to text."""
|
266 |
try:
|
267 |
print(f"Processing video file at {video_file_path}")
|
268 |
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
269 |
+
video = mp.VideoFileClip(video_file_path)
|
270 |
+
video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
print(f"Audio extracted to {temp_audio_path}")
|
272 |
result = speech_to_text(temp_audio_path)
|
273 |
transcript = result["text"]
|
|
|
426 |
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
|
427 |
with torch.no_grad():
|
428 |
outputs = cuad_model(**inputs)
|
429 |
+
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0] # Using start_logits for example
|
430 |
for idx, confidence in enumerate(predictions):
|
431 |
if confidence > 0.5 and idx < len(clause_types):
|
432 |
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
|
|
|
525 |
temp_file_path = temp_file.name
|
526 |
print(f"Temporary file saved at: {temp_file_path}")
|
527 |
text = process_audio_to_text(temp_file_path)
|
528 |
+
if os.path.exists(temp_file_path):
|
529 |
os.remove(temp_file_path)
|
530 |
if not text:
|
531 |
return {"status": "error", "message": "No speech could be transcribed from the audio."}
|
|
|
614 |
print(f"β οΈ Ngrok setup error: {e}")
|
615 |
return None
|
616 |
|
617 |
+
from fastapi.responses import FileResponse
|
618 |
+
|
619 |
@app.get("/download_risk_chart")
|
620 |
async def download_risk_chart():
|
621 |
"""Generate and return a risk assessment chart as an image file."""
|
|
|
750 |
else:
|
751 |
print("\nβ οΈ Ngrok setup failed. API will only be available locally.\n")
|
752 |
run()
|
|
|
|