Spaces:
Build error
Build error
File size: 62,167 Bytes
1bb02c9 fcda643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 |
from huggingface_hub import snapshot_download
import os
import io
import time
import uuid
import tempfile
import numpy as np
import matplotlib.pyplot as plt
import pdfplumber
import spacy
import torch
import sqlite3
import uvicorn
import moviepy.editor as mp
from threading import Thread
from datetime import datetime, timedelta
from typing import List, Dict, Optional
from fastapi import FastAPI, File, UploadFile, Form, Depends, HTTPException, status, Header
from fastapi.responses import FileResponse, HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
import logging
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForQuestionAnswering,
pipeline,
TrainingArguments,
Trainer
)
from sentence_transformers import SentenceTransformer
from passlib.context import CryptContext
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
import jwt
from dotenv import load_dotenv
# Import get_db_connection from auth
from auth import (
User, UserCreate, Token, get_current_active_user, authenticate_user,
create_access_token, hash_password, register_user, check_subscription_access,
SUBSCRIPTION_TIERS, JWT_EXPIRATION_DELTA, get_db_connection, update_auth_db_schema
)
# Add this import near the top with your other imports
from paypal_integration import (
create_user_subscription, verify_subscription_payment,
update_user_subscription, handle_subscription_webhook, initialize_database
)
from fastapi import Request # Add this if not already imported
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("app")
# Initialize the database
# Initialize FastAPI app
app = FastAPI(
title="Legal Document Analysis API",
description="API for analyzing legal documents, videos, and audio",
version="1.0.0"
)
# Set up CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["https://testing-78wtxfqt0-hardikkandpals-projects.vercel.app",
"http://localhost:3000",
# Add the actual Hugging Face Space URL
"https://huggingface.co/spaces/tejash300/testing",
# Add the direct Space URL format
"https://tejash300-testing.hf.space"], # Frontend URL
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
initialize_database()
try:
update_auth_db_schema()
logger.info("Database schema updated successfully")
except Exception as e:
logger.error(f"Database schema update error: {e}")
# Create static directory for file storage
os.makedirs("static", exist_ok=True)
os.makedirs("uploads", exist_ok=True)
os.makedirs("temp", exist_ok=True)
app.mount("/static", StaticFiles(directory="static"), name="static")
# Set device for model inference
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize chat history
chat_history = []
# Document context storage
document_contexts = {}
def store_document_context(task_id, text):
"""Store document text for later retrieval."""
document_contexts[task_id] = text
def load_document_context(task_id):
"""Load document text for a given task ID."""
return document_contexts.get(task_id, "")
def get_db_connection():
"""Get a connection to the SQLite database."""
db_path = os.path.join(os.path.dirname(__file__), "legal_analysis.db")
conn = sqlite3.connect(db_path)
conn.row_factory = sqlite3.Row
return conn
load_dotenv()
DB_PATH = os.getenv("DB_PATH", os.path.join(os.path.dirname(__file__), "data/user_data.db"))
os.makedirs(os.path.join(os.path.dirname(__file__), "data"), exist_ok=True)
def fine_tune_qa_model():
"""Fine-tunes a QA model on the CUAD dataset."""
print("Loading base model for fine-tuning...")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
# Load and preprocess CUAD dataset
print("Loading CUAD dataset...")
from datasets import load_dataset
try:
dataset = load_dataset("cuad")
except Exception as e:
print(f"Error loading CUAD dataset: {str(e)}")
print("Downloading CUAD dataset from alternative source...")
# Implement alternative dataset loading here
return tokenizer, model
print(f"Dataset loaded with {len(dataset['train'])} training examples")
# Preprocess the dataset
def preprocess_function(examples):
questions = [q.strip() for q in examples["question"]]
contexts = [c.strip() for c in examples["context"]]
inputs = tokenizer(
questions,
contexts,
max_length=384,
truncation="only_second",
stride=128,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs.pop("offset_mapping")
sample_map = inputs.pop("overflow_to_sample_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
sample_idx = sample_map[i]
answer = answers[sample_idx]
start_char = answer["answer_start"][0] if len(answer["answer_start"]) > 0 else 0
end_char = start_char + len(answer["text"][0]) if len(answer["text"]) > 0 else 0
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while idx < len(sequence_ids) and sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label is (0, 0)
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
print("Preprocessing dataset...")
processed_dataset = dataset.map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names,
)
print("Splitting dataset...")
train_dataset = processed_dataset["train"]
val_dataset = processed_dataset["validation"]
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
training_args = TrainingArguments(
output_dir="./fine_tuned_legal_qa",
evaluation_strategy="steps",
eval_steps=100,
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=1,
weight_decay=0.01,
logging_steps=50,
save_steps=100,
load_best_model_at_end=True,
report_to=[]
)
print("✅ Starting fine tuning on CUAD QA dataset...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
trainer.train()
print("✅ Fine tuning completed. Saving model...")
model.save_pretrained("./fine_tuned_legal_qa")
tokenizer.save_pretrained("./fine_tuned_legal_qa")
return tokenizer, model
#############################
# Load NLP Models #
#############################
# Initialize model variables
nlp = None
summarizer = None
embedding_model = None
ner_model = None
speech_to_text = None
cuad_model = None
cuad_tokenizer = None
qa_model = None
# Add model caching functionality
import pickle
import os.path
#MODELS_CACHE_DIR = "c:\\Users\\hardi\\OneDrive\\Desktop\\New folder (7)\\doc-vid-analyze-main\\models_cache"
MODELS_CACHE_DIR = os.getenv("MODELS_CACHE_DIR", "models_cache")
os.makedirs(MODELS_CACHE_DIR, exist_ok=True)
def download_model_from_hub(model_id, subfolder=None):
"""Download a model from Hugging Face Hub"""
try:
local_dir = snapshot_download(
repo_id=model_id,
subfolder=subfolder,
local_dir=os.path.join(MODELS_CACHE_DIR, model_id.replace("/", "_"))
)
print(f"✅ Downloaded model {model_id} to {local_dir}")
return local_dir
except Exception as e:
print(f"⚠️ Error downloading model {model_id}: {str(e)}")
return None
def save_model_to_cache(model, model_name):
"""Save a model to the cache directory"""
try:
cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl")
with open(cache_path, 'wb') as f:
pickle.dump(model, f)
print(f"✅ Saved {model_name} to cache")
return True
except Exception as e:
print(f"⚠️ Failed to save {model_name} to cache: {str(e)}")
return False
def load_model_from_cache(model_name):
"""Load a model from the cache directory"""
try:
cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl")
if os.path.exists(cache_path):
with open(cache_path, 'rb') as f:
model = pickle.load(f)
print(f"✅ Loaded {model_name} from cache")
return model
return None
except Exception as e:
print(f"⚠️ Failed to load {model_name} from cache: {str(e)}")
return None
# Add a flag to control model loading
LOAD_MODELS = os.getenv("LOAD_MODELS", "True").lower() in ("true", "1", "t")
try:
if LOAD_MODELS:
# Try to load SpaCy from cache first
nlp = load_model_from_cache("spacy_model")
if nlp is None:
try:
nlp = spacy.load("en_core_web_sm")
save_model_to_cache(nlp, "spacy_model")
except:
print("⚠️ SpaCy model not found, downloading...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
save_model_to_cache(nlp, "spacy_model")
print("✅ Loading NLP models...")
# Load the summarizer with caching
print("Loading summarizer model...")
summarizer = load_model_from_cache("summarizer_model")
if summarizer is None:
try:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1)
save_model_to_cache(summarizer, "summarizer_model")
print("✅ Summarizer loaded successfully")
except Exception as e:
print(f"⚠️ Error loading summarizer: {str(e)}")
try:
print("Trying alternative summarizer model...")
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6",
device=0 if torch.cuda.is_available() else -1)
save_model_to_cache(summarizer, "summarizer_model")
print("✅ Alternative summarizer loaded successfully")
except Exception as e2:
print(f"⚠️ Error loading alternative summarizer: {str(e2)}")
summarizer = None
# Load the embedding model with caching
print("Loading embedding model...")
embedding_model = load_model_from_cache("embedding_model")
if embedding_model is None:
try:
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
save_model_to_cache(embedding_model, "embedding_model")
print("✅ Embedding model loaded successfully")
except Exception as e:
print(f"⚠️ Error loading embedding model: {str(e)}")
embedding_model = None
# Load the NER model with caching
print("Loading NER model...")
ner_model = load_model_from_cache("ner_model")
if ner_model is None:
try:
ner_model = pipeline("ner", model="dslim/bert-base-NER",
device=0 if torch.cuda.is_available() else -1)
save_model_to_cache(ner_model, "ner_model")
print("✅ NER model loaded successfully")
except Exception as e:
print(f"⚠️ Error loading NER model: {str(e)}")
ner_model = None
# Speech to text model with caching
print("Loading speech to text model...")
speech_to_text = load_model_from_cache("speech_to_text_model")
if speech_to_text is None:
try:
speech_to_text = pipeline("automatic-speech-recognition",
model="openai/whisper-medium",
chunk_length_s=30,
device_map="auto" if torch.cuda.is_available() else "cpu")
save_model_to_cache(speech_to_text, "speech_to_text_model")
print("✅ Speech to text model loaded successfully")
except Exception as e:
print(f"⚠️ Error loading speech to text model: {str(e)}")
speech_to_text = None
# Load the fine-tuned model with caching
print("Loading fine-tuned CUAD QA model...")
cuad_model = load_model_from_cache("cuad_model")
cuad_tokenizer = load_model_from_cache("cuad_tokenizer")
if cuad_model is None or cuad_tokenizer is None:
try:
cuad_tokenizer = AutoTokenizer.from_pretrained("hardik8588/fine-tuned-legal-qa")
from transformers import AutoModelForQuestionAnswering
cuad_model = AutoModelForQuestionAnswering.from_pretrained("hardik8588/fine-tuned-legal-qa")
cuad_model.to(device)
save_model_to_cache(cuad_tokenizer, "cuad_tokenizer")
save_model_to_cache(cuad_model, "cuad_model")
print("✅ Successfully loaded fine-tuned model")
except Exception as e:
print(f"⚠️ Error loading fine-tuned model: {str(e)}")
print("⚠️ Falling back to pre-trained model...")
try:
cuad_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
from transformers import AutoModelForQuestionAnswering
cuad_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
cuad_model.to(device)
save_model_to_cache(cuad_tokenizer, "cuad_tokenizer")
save_model_to_cache(cuad_model, "cuad_model")
print("✅ Pre-trained model loaded successfully")
except Exception as e2:
print(f"⚠️ Error loading pre-trained model: {str(e2)}")
cuad_model = None
cuad_tokenizer = None
# Load a general QA model with caching
print("Loading general QA model...")
qa_model = load_model_from_cache("qa_model")
if qa_model is None:
try:
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
save_model_to_cache(qa_model, "qa_model")
print("✅ QA model loaded successfully")
except Exception as e:
print(f"⚠️ Error loading QA model: {str(e)}")
qa_model = None
print("✅ All models loaded successfully")
else:
print("⚠️ Model loading skipped (LOAD_MODELS=False)")
except Exception as e:
print(f"⚠️ Error loading models: {str(e)}")
# Instead of raising an error, set fallback behavior
nlp = None
summarizer = None
embedding_model = None
ner_model = None
speech_to_text = None
cuad_model = None
cuad_tokenizer = None
qa_model = None
print("⚠️ Running with limited functionality due to model loading errors")
def legal_chatbot(user_input, context):
"""Uses a real NLP model for legal Q&A."""
global chat_history
chat_history.append({"role": "user", "content": user_input})
response = qa_model(question=user_input, context=context)["answer"]
chat_history.append({"role": "assistant", "content": response})
return response
def extract_text_from_pdf(pdf_file):
"""Extracts text from a PDF file using pdfplumber."""
try:
# Suppress pdfplumber warnings about CropBox
import logging
logging.getLogger("pdfminer").setLevel(logging.ERROR)
with pdfplumber.open(pdf_file) as pdf:
print(f"Processing PDF with {len(pdf.pages)} pages")
text = ""
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
text += page_text + "\n"
if (i + 1) % 10 == 0: # Log progress every 10 pages
print(f"Processed {i + 1} pages...")
print(f"✅ PDF text extraction complete: {len(text)} characters extracted")
return text.strip() if text else None
except Exception as e:
print(f"❌ PDF extraction error: {str(e)}")
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
def process_video_to_text(video_file_path):
"""Extract audio from video and convert to text."""
try:
print(f"Processing video file at {video_file_path}")
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
video = mp.VideoFileClip(video_file_path)
video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
print(f"Audio extracted to {temp_audio_path}")
result = speech_to_text(temp_audio_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
return transcript
except Exception as e:
print(f"Error in video processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
def process_audio_to_text(audio_file_path):
"""Process audio file and convert to text."""
try:
print(f"Processing audio file at {audio_file_path}")
result = speech_to_text(audio_file_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
return transcript
except Exception as e:
print(f"Error in audio processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
def extract_named_entities(text):
"""Extracts named entities from legal text."""
max_length = 10000
entities = []
for i in range(0, len(text), max_length):
chunk = text[i:i+max_length]
doc = nlp(chunk)
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
return entities
def analyze_risk(text):
"""Analyzes legal risk in the document using keyword-based analysis."""
risk_keywords = {
"Liability": ["liability", "responsible", "responsibility", "legal obligation"],
"Termination": ["termination", "breach", "contract end", "default"],
"Indemnification": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"],
"Payment Risk": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"],
"Insurance": ["insurance", "coverage", "policy", "claims"],
}
risk_scores = {category: 0 for category in risk_keywords}
lower_text = text.lower()
for category, keywords in risk_keywords.items():
for keyword in keywords:
risk_scores[category] += lower_text.count(keyword.lower())
return risk_scores
def extract_context_for_risk_terms(text, risk_keywords, window=1):
"""
Extracts and summarizes the context around risk terms.
"""
doc = nlp(text)
sentences = list(doc.sents)
risk_contexts = {category: [] for category in risk_keywords}
for i, sent in enumerate(sentences):
sent_text_lower = sent.text.lower()
for category, details in risk_keywords.items():
for keyword in details["keywords"]:
if keyword.lower() in sent_text_lower:
start_idx = max(0, i - window)
end_idx = min(len(sentences), i + window + 1)
context_chunk = " ".join([s.text for s in sentences[start_idx:end_idx]])
risk_contexts[category].append(context_chunk)
summarized_contexts = {}
for category, contexts in risk_contexts.items():
if contexts:
combined_context = " ".join(contexts)
try:
summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False)
summary = summary_result[0]['summary_text']
except Exception as e:
summary = "Context summarization failed."
summarized_contexts[category] = summary
else:
summarized_contexts[category] = "No contextual details found."
return summarized_contexts
def get_detailed_risk_info(text):
"""
Returns detailed risk information by merging risk scores with descriptive details
and contextual summaries from the document.
"""
risk_details = {
"Liability": {
"description": "Liability refers to the legal responsibility for losses or damages.",
"common_concerns": "Broad liability clauses may expose parties to unforeseen risks.",
"recommendations": "Review and negotiate clear limits on liability.",
"example": "E.g., 'The party shall be liable for direct damages due to negligence.'"
},
"Termination": {
"description": "Termination involves conditions under which a contract can be ended.",
"common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.",
"recommendations": "Ensure termination clauses are balanced and include notice periods.",
"example": "E.g., 'Either party may terminate the agreement with 30 days notice.'"
},
"Indemnification": {
"description": "Indemnification requires one party to compensate for losses incurred by the other.",
"common_concerns": "Overly broad indemnification can shift significant risk.",
"recommendations": "Negotiate clear limits and carve-outs where necessary.",
"example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'"
},
"Payment Risk": {
"description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.",
"common_concerns": "Vague payment terms or hidden charges increase risk.",
"recommendations": "Clarify payment conditions and include penalties for delays.",
"example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'"
},
"Insurance": {
"description": "Insurance risk covers the adequacy and scope of required coverage.",
"common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.",
"recommendations": "Review insurance requirements to ensure they meet the risk profile.",
"example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'"
}
}
risk_scores = analyze_risk(text)
risk_keywords_context = {
"Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]},
"Termination": {"keywords": ["termination", "breach", "contract end", "default"]},
"Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]},
"Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]},
"Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]}
}
risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1)
detailed_info = {}
for risk_term, score in risk_scores.items():
if score > 0:
info = risk_details.get(risk_term, {"description": "No details available."})
detailed_info[risk_term] = {
"score": score,
"description": info.get("description", ""),
"common_concerns": info.get("common_concerns", ""),
"recommendations": info.get("recommendations", ""),
"example": info.get("example", ""),
"context_summary": risk_contexts.get(risk_term, "No context available.")
}
return detailed_info
def analyze_contract_clauses(text):
"""Analyzes contract clauses using the fine-tuned CUAD QA model."""
max_length = 512
step = 256
clauses_detected = []
try:
clause_types = list(cuad_model.config.id2label.values())
except Exception as e:
clause_types = [
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
]
chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
for chunk in chunks:
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = cuad_model(**inputs)
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
for idx, confidence in enumerate(predictions):
if confidence > 0.5 and idx < len(clause_types):
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
aggregated_clauses = {}
for clause in clauses_detected:
clause_type = clause["type"]
if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
aggregated_clauses[clause_type] = clause
return list(aggregated_clauses.values())
def summarize_text(text):
"""Summarizes legal text using the summarizer model."""
try:
if summarizer is None:
return "Basic analysis (NLP models not available)"
# Split text into chunks if it's too long
max_chunk_size = 1024
if len(text) > max_chunk_size:
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
summaries = []
for chunk in chunks:
summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)
summaries.append(summary[0]['summary_text'])
return " ".join(summaries)
else:
summary = summarizer(text, max_length=100, min_length=30, do_sample=False)
return summary[0]['summary_text']
except Exception as e:
print(f"Error in summarization: {str(e)}")
return "Summarization failed. Please try again later."
@app.post("/analyze_legal_document")
async def analyze_legal_document(
file: UploadFile = File(...),
current_user: User = Depends(get_current_active_user)
):
"""Analyzes a legal document (PDF) and returns insights based on subscription tier."""
try:
# Calculate file size in MB
file_content = await file.read()
file_size_mb = len(file_content) / (1024 * 1024)
# Check subscription access for document analysis
check_subscription_access(current_user, "document_analysis", file_size_mb)
print(f"Processing file: {file.filename}")
# Create a temporary file to store the uploaded PDF
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
tmp.write(file_content)
tmp_path = tmp.name
# Extract text from PDF
text = extract_text_from_pdf(tmp_path)
# Clean up the temporary file
os.unlink(tmp_path)
if not text:
raise HTTPException(status_code=400, detail="Could not extract text from PDF")
# Generate a task ID
task_id = str(uuid.uuid4())
# Store document context for later retrieval
store_document_context(task_id, text)
# Basic analysis available to all tiers
summary = summarize_text(text)
entities = extract_named_entities(text)
risk_scores = analyze_risk(text)
# Prepare response based on subscription tier
response = {
"task_id": task_id,
"summary": summary,
"entities": entities,
"risk_assessment": risk_scores,
"subscription_tier": current_user.subscription_tier
}
# Add premium features if user has access
if current_user.subscription_tier == "premium_tier":
# Add detailed risk assessment
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
detailed_risk = get_detailed_risk_info(text)
response["detailed_risk_assessment"] = detailed_risk
# Add contract clause analysis
if "contract_clause_analysis" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
clauses = analyze_contract_clauses(text)
response["contract_clauses"] = clauses
return response
except Exception as e:
print(f"Error analyzing document: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error analyzing document: {str(e)}")
# Add this function to check resource limits based on subscription tier
def check_resource_limits(user: User, resource_type: str, size_mb: float = None, count: int = 1):
"""
Check if the user has exceeded their subscription limits for a specific resource
Args:
user: The user making the request
resource_type: Type of resource (document, video, audio)
size_mb: Size of the resource in MB
count: Number of resources being used (default 1)
Returns:
bool: True if within limits, raises HTTPException otherwise
"""
# Get the user's subscription tier limits
tier = user.subscription_tier
tier_limits = SUBSCRIPTION_TIERS.get(tier, SUBSCRIPTION_TIERS["free_tier"])["limits"]
# Check size limits
if size_mb is not None:
if resource_type == "document" and size_mb > tier_limits["document_size_mb"]:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Document size exceeds the {tier_limits['document_size_mb']}MB limit for your {tier} subscription"
)
elif resource_type == "video" and size_mb > tier_limits["video_size_mb"]:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Video size exceeds the {tier_limits['video_size_mb']}MB limit for your {tier} subscription"
)
elif resource_type == "audio" and size_mb > tier_limits["audio_size_mb"]:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Audio size exceeds the {tier_limits['audio_size_mb']}MB limit for your {tier} subscription"
)
# Check monthly document count
if resource_type == "document":
# Get current month and year
now = datetime.now()
month, year = now.month, now.year
# Check usage stats for current month
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute(
"SELECT analyses_used FROM usage_stats WHERE user_id = ? AND month = ? AND year = ?",
(user.id, month, year)
)
result = cursor.fetchone()
current_usage = result[0] if result else 0
# Check if adding this usage would exceed the limit
if current_usage + count > tier_limits["documents_per_month"]:
conn.close()
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"You have reached your monthly limit of {tier_limits['documents_per_month']} document analyses for your {tier} subscription"
)
# Update usage stats
if result:
cursor.execute(
"UPDATE usage_stats SET analyses_used = ? WHERE user_id = ? AND month = ? AND year = ?",
(current_usage + count, user.id, month, year)
)
else:
usage_id = str(uuid.uuid4())
cursor.execute(
"INSERT INTO usage_stats (id, user_id, month, year, analyses_used) VALUES (?, ?, ?, ?, ?)",
(usage_id, user.id, month, year, count)
)
conn.commit()
conn.close()
# Check if feature is available in the tier
if resource_type == "video" and tier_limits["video_size_mb"] == 0:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Video analysis is not available in your {tier} subscription"
)
if resource_type == "audio" and tier_limits["audio_size_mb"] == 0:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Audio analysis is not available in your {tier} subscription"
)
return True
@app.post("/analyze_legal_video")
async def analyze_legal_video(
file: UploadFile = File(...),
current_user: User = Depends(get_current_active_user)
):
"""Analyzes legal video by transcribing and analyzing the transcript."""
try:
# Calculate file size in MB
file_content = await file.read()
file_size_mb = len(file_content) / (1024 * 1024)
# Check subscription access for video analysis
check_subscription_access(current_user, "video_analysis", file_size_mb)
print(f"Processing video file: {file.filename}")
# Create a temporary file to store the uploaded video
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp:
tmp.write(file_content)
tmp_path = tmp.name
# Process video to extract transcript
transcript = process_video_to_text(tmp_path)
# Clean up the temporary file
os.unlink(tmp_path)
if not transcript:
raise HTTPException(status_code=400, detail="Could not extract transcript from video")
# Generate a task ID
task_id = str(uuid.uuid4())
# Store document context for later retrieval
store_document_context(task_id, transcript)
# Basic analysis
summary = summarize_text(transcript)
entities = extract_named_entities(transcript)
risk_scores = analyze_risk(transcript)
# Prepare response
response = {
"task_id": task_id,
"transcript": transcript,
"summary": summary,
"entities": entities,
"risk_assessment": risk_scores,
"subscription_tier": current_user.subscription_tier
}
# Add premium features if user has access
if current_user.subscription_tier == "premium_tier":
# Add detailed risk assessment
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
detailed_risk = get_detailed_risk_info(transcript)
response["detailed_risk_assessment"] = detailed_risk
return response
except Exception as e:
print(f"Error analyzing video: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error analyzing video: {str(e)}")
@app.post("/legal_chatbot/{task_id}")
async def chat_with_document(
task_id: str,
question: str = Form(...),
current_user: User = Depends(get_current_active_user)
):
"""Chat with a document using the legal chatbot."""
try:
# Check if user has access to chatbot feature
if "chatbot" not in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
raise HTTPException(
status_code=403,
detail=f"The chatbot feature is not available in your {current_user.subscription_tier} subscription. Please upgrade to access this feature."
)
# Check if document context exists
context = load_document_context(task_id)
if not context:
raise HTTPException(status_code=404, detail="Document context not found. Please analyze a document first.")
# Use the chatbot to answer the question
answer = legal_chatbot(question, context)
return {"answer": answer, "chat_history": chat_history}
except Exception as e:
print(f"Error in chatbot: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in chatbot: {str(e)}")
@app.get("/")
async def root():
"""Root endpoint that returns a welcome message."""
return HTMLResponse(content="""
<html>
<head>
<title>Legal Document Analysis API</title>
<style>
body {
font-family: Arial, sans-serif;
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
h1 {
color: #2c3e50;
}
.endpoint {
background-color: #f8f9fa;
padding: 15px;
margin-bottom: 10px;
border-radius: 5px;
}
.method {
font-weight: bold;
color: #e74c3c;
}
</style>
</head>
<body>
<h1>Legal Document Analysis API</h1>
<p>Welcome to the Legal Document Analysis API. This API provides tools for analyzing legal documents, videos, and audio.</p>
<h2>Available Endpoints:</h2>
<div class="endpoint">
<p><span class="method">POST</span> /analyze_legal_document - Analyze a legal document (PDF)</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /analyze_legal_video - Analyze a legal video</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /analyze_legal_audio - Analyze legal audio</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /legal_chatbot/{task_id} - Chat with a document</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /register - Register a new user</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /token - Login to get an access token</p>
</div>
<div class="endpoint">
<p><span class="method">GET</span> /users/me - Get current user information</p>
</div>
<div class="endpoint">
<p><span class="method">POST</span> /subscribe/{tier} - Subscribe to a plan</p>
</div>
<p>For more details, visit the <a href="/docs">API documentation</a>.</p>
</body>
</html>
""")
@app.post("/register", response_model=Token)
async def register_new_user(user_data: UserCreate):
"""Register a new user with a free subscription"""
try:
success, result = register_user(user_data.email, user_data.password)
if not success:
raise HTTPException(status_code=400, detail=result)
return {"access_token": result["access_token"], "token_type": "bearer"}
except HTTPException:
# Re-raise HTTP exceptions
raise
except Exception as e:
print(f"Registration error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
@app.post("/token", response_model=Token)
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
"""Endpoint for OAuth2 token generation"""
try:
# Add debug logging
logger.info(f"Token request for username: {form_data.username}")
user = authenticate_user(form_data.username, form_data.password)
if not user:
logger.warning(f"Authentication failed for: {form_data.username}")
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Bearer"},
)
access_token = create_access_token(user.id)
if not access_token:
logger.error(f"Failed to create access token for user: {user.id}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Could not create access token",
)
logger.info(f"Login successful for: {form_data.username}")
return {"access_token": access_token, "token_type": "bearer"}
except Exception as e:
logger.error(f"Token endpoint error: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Login error: {str(e)}",
)
@app.get("/debug/token")
async def debug_token(authorization: str = Header(None)):
"""Debug endpoint to check token validity"""
try:
if not authorization:
return {"valid": False, "error": "No authorization header provided"}
# Extract token from Authorization header
scheme, token = authorization.split()
if scheme.lower() != 'bearer':
return {"valid": False, "error": "Not a bearer token"}
# Log the token for debugging
logger.info(f"Debugging token: {token[:10]}...")
# Try to validate the token
try:
user = await get_current_active_user(token)
return {"valid": True, "user_id": user.id, "email": user.email}
except Exception as e:
return {"valid": False, "error": str(e)}
except Exception as e:
return {"valid": False, "error": f"Token debug error: {str(e)}"}
@app.post("/login")
async def api_login(email: str, password: str):
success, result = login_user(email, password)
if not success:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=result
)
return result
@app.get("/health")
def health_check():
"""Simple health check endpoint to verify the API is running"""
return {"status": "ok", "message": "API is running"}
@app.get("/users/me", response_model=User)
async def read_users_me(current_user: User = Depends(get_current_active_user)):
return current_user
@app.post("/analyze_legal_audio")
async def analyze_legal_audio(
file: UploadFile = File(...),
current_user: User = Depends(get_current_active_user)
):
"""Analyzes legal audio by transcribing and analyzing the transcript."""
try:
# Calculate file size in MB
file_content = await file.read()
file_size_mb = len(file_content) / (1024 * 1024)
# Check subscription access for audio analysis
check_subscription_access(current_user, "audio_analysis", file_size_mb)
print(f"Processing audio file: {file.filename}")
# Create a temporary file to store the uploaded audio
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp:
tmp.write(file_content)
tmp_path = tmp.name
# Process audio to extract transcript
transcript = process_audio_to_text(tmp_path)
# Clean up the temporary file
os.unlink(tmp_path)
if not transcript:
raise HTTPException(status_code=400, detail="Could not extract transcript from audio")
# Generate a task ID
task_id = str(uuid.uuid4())
# Store document context for later retrieval
store_document_context(task_id, transcript)
# Basic analysis
summary = summarize_text(transcript)
entities = extract_named_entities(transcript)
risk_scores = analyze_risk(transcript)
# Prepare response
response = {
"task_id": task_id,
"transcript": transcript,
"summary": summary,
"entities": entities,
"risk_assessment": risk_scores,
"subscription_tier": current_user.subscription_tier
}
# Add premium features if user has access
if current_user.subscription_tier == "premium_tier": # Change from premium_tier to premium
# Add detailed risk assessment
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
detailed_risk = get_detailed_risk_info(transcript)
response["detailed_risk_assessment"] = detailed_risk
return response
except Exception as e:
print(f"Error analyzing audio: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error analyzing audio: {str(e)}")
# Add these new endpoints before the if __name__ == "__main__" line
@app.get("/users/me/subscription")
async def get_user_subscription(current_user: User = Depends(get_current_active_user)):
"""Get the current user's subscription details"""
try:
# Get subscription details from database
conn = get_db_connection()
cursor = conn.cursor()
# Get the most recent active subscription
try:
cursor.execute(
"SELECT id, tier, status, created_at, expires_at, paypal_subscription_id FROM subscriptions "
"WHERE user_id = ? AND status = 'active' ORDER BY created_at DESC LIMIT 1",
(current_user.id,)
)
subscription = cursor.fetchone()
except sqlite3.OperationalError as e:
# Handle missing tier column
if "no such column: tier" in str(e):
logger.warning("Subscriptions table missing 'tier' column. Returning default subscription.")
subscription = None
else:
raise
# Get subscription tiers with pricing directly from SUBSCRIPTION_TIERS
subscription_tiers = {
"free_tier": {
"price": SUBSCRIPTION_TIERS["free_tier"]["price"],
"currency": SUBSCRIPTION_TIERS["free_tier"]["currency"],
"features": SUBSCRIPTION_TIERS["free_tier"]["features"]
},
"standard_tier": {
"price": SUBSCRIPTION_TIERS["standard_tier"]["price"],
"currency": SUBSCRIPTION_TIERS["standard_tier"]["currency"],
"features": SUBSCRIPTION_TIERS["standard_tier"]["features"]
},
"premium_tier": {
"price": SUBSCRIPTION_TIERS["premium_tier"]["price"],
"currency": SUBSCRIPTION_TIERS["premium_tier"]["currency"],
"features": SUBSCRIPTION_TIERS["premium_tier"]["features"]
}
}
if subscription:
sub_id, tier, status, created_at, expires_at, paypal_id = subscription
result = {
"id": sub_id,
"tier": tier,
"status": status,
"created_at": created_at,
"expires_at": expires_at,
"paypal_subscription_id": paypal_id,
"current_tier": current_user.subscription_tier,
"subscription_tiers": subscription_tiers
}
else:
result = {
"tier": "free_tier",
"status": "active",
"current_tier": current_user.subscription_tier,
"subscription_tiers": subscription_tiers
}
conn.close()
return result
except Exception as e:
logger.error(f"Error getting subscription: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error getting subscription: {str(e)}")
# Add this model definition before your endpoints
class SubscriptionCreate(BaseModel):
tier: str
@app.post("/create_subscription")
async def create_subscription(
subscription: SubscriptionCreate,
current_user: User = Depends(get_current_active_user)
):
"""Create a subscription for the current user"""
try:
# Log the request for debugging
logger.info(f"Creating subscription for user {current_user.email} with tier {subscription.tier}")
logger.info(f"Available tiers: {list(SUBSCRIPTION_TIERS.keys())}")
# Validate tier
valid_tiers = ["standard_tier", "premium_tier"]
if subscription.tier not in valid_tiers:
logger.warning(f"Invalid tier requested: {subscription.tier}")
raise HTTPException(status_code=400, detail=f"Invalid tier: {subscription.tier}. Must be one of {valid_tiers}")
# Create subscription
logger.info(f"Calling create_user_subscription with email: {current_user.email}, tier: {subscription.tier}")
success, result = create_user_subscription(current_user.email, subscription.tier)
if not success:
logger.error(f"Failed to create subscription: {result}")
raise HTTPException(status_code=400, detail=result)
logger.info(f"Subscription created successfully: {result}")
return result
except Exception as e:
logger.error(f"Error creating subscription: {str(e)}")
# Include the full traceback for better debugging
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}")
@app.post("/subscribe/{tier}")
async def subscribe_to_tier(
tier: str,
current_user: User = Depends(get_current_active_user)
):
"""Subscribe to a specific tier"""
try:
# Validate tier
valid_tiers = ["standard_tier", "premium_tier"]
if tier not in valid_tiers:
raise HTTPException(status_code=400, detail=f"Invalid tier: {tier}. Must be one of {valid_tiers}")
# Create subscription
success, result = create_user_subscription(current_user.email, tier)
if not success:
raise HTTPException(status_code=400, detail=result)
return result
except Exception as e:
logger.error(f"Error creating subscription: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}")
@app.post("/subscription/create")
async def create_subscription(request: Request, current_user: User = Depends(get_current_active_user)):
"""Create a subscription for the current user"""
try:
data = await request.json()
tier = data.get("tier")
if not tier:
return JSONResponse(
status_code=400,
content={"detail": "Tier is required"}
)
# Log the request for debugging
logger.info(f"Creating subscription for user {current_user.email} with tier {tier}")
# Create the subscription using the imported function directly
success, result = create_user_subscription(current_user.email, tier)
if success:
# Make sure we're returning the approval_url in the response
logger.info(f"Subscription created successfully: {result}")
logger.info(f"Approval URL: {result.get('approval_url')}")
return {
"success": True,
"data": {
"approval_url": result["approval_url"],
"subscription_id": result["subscription_id"],
"tier": result["tier"]
}
}
else:
logger.error(f"Failed to create subscription: {result}")
return JSONResponse(
status_code=400,
content={"success": False, "detail": result}
)
except Exception as e:
logger.error(f"Error creating subscription: {str(e)}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return JSONResponse(
status_code=500,
content={"success": False, "detail": f"Error creating subscription: {str(e)}"}
)
@app.post("/admin/initialize-paypal-plans")
async def initialize_paypal_plans(request: Request):
"""Initialize PayPal subscription plans"""
try:
# This should be protected with admin authentication in production
plans = initialize_subscription_plans()
if plans:
return JSONResponse(
status_code=200,
content={"success": True, "plans": plans}
)
else:
return JSONResponse(
status_code=500,
content={"success": False, "detail": "Failed to initialize plans"}
)
except Exception as e:
logger.error(f"Error initializing PayPal plans: {str(e)}")
return JSONResponse(
status_code=500,
content={"success": False, "detail": f"Error initializing plans: {str(e)}"}
)
@app.post("/subscription/verify")
async def verify_subscription(request: Request, current_user: User = Depends(get_current_active_user)):
"""Verify a subscription after payment"""
try:
data = await request.json()
subscription_id = data.get("subscription_id")
if not subscription_id:
return JSONResponse(
status_code=400,
content={"success": False, "detail": "Subscription ID is required"}
)
logger.info(f"Verifying subscription: {subscription_id}")
# Verify the subscription with PayPal
success, result = verify_paypal_subscription(subscription_id)
if not success:
logger.error(f"Subscription verification failed: {result}")
return JSONResponse(
status_code=400,
content={"success": False, "detail": str(result)}
)
# Update the user's subscription in the database
conn = get_db_connection()
cursor = conn.cursor()
# Get the subscription details
cursor.execute(
"SELECT tier FROM subscriptions WHERE paypal_subscription_id = ?",
(subscription_id,)
)
subscription = cursor.fetchone()
if not subscription:
# This is a new subscription, get the tier from the PayPal response
tier = "standard_tier" # Default to standard tier
# You could extract the tier from the PayPal plan ID if needed
# Create a new subscription record
sub_id = str(uuid.uuid4())
start_date = datetime.now()
expires_at = start_date + timedelta(days=30)
cursor.execute(
"INSERT INTO subscriptions (id, user_id, tier, status, created_at, expires_at, paypal_subscription_id) VALUES (?, ?, ?, ?, ?, ?, ?)",
(sub_id, current_user.id, tier, "active", start_date, expires_at, subscription_id)
)
else:
# Update existing subscription
tier = subscription[0]
cursor.execute(
"UPDATE subscriptions SET status = 'active' WHERE paypal_subscription_id = ?",
(subscription_id,)
)
# Update user's subscription tier
cursor.execute(
"UPDATE users SET subscription_tier = ? WHERE id = ?",
(tier, current_user.id)
)
conn.commit()
conn.close()
return JSONResponse(
status_code=200,
content={"success": True, "detail": "Subscription verified successfully"}
)
except Exception as e:
logger.error(f"Error verifying subscription: {str(e)}")
return JSONResponse(
status_code=500,
content={"success": False, "detail": f"Error verifying subscription: {str(e)}"}
)
@app.post("/subscription/webhook")
async def subscription_webhook(request: Request):
"""Handle PayPal subscription webhooks"""
try:
payload = await request.json()
success, result = handle_subscription_webhook(payload)
if not success:
logger.error(f"Webhook processing failed: {result}")
return {"status": "error", "message": result}
return {"status": "success", "message": result}
except Exception as e:
logger.error(f"Error processing webhook: {str(e)}")
return {"status": "error", "message": f"Error processing webhook: {str(e)}"}
@app.get("/subscription/verify/{subscription_id}")
async def verify_subscription(
subscription_id: str,
current_user: User = Depends(get_current_active_user)
):
"""Verify a subscription payment and update user tier"""
try:
# Verify the subscription
success, result = verify_subscription_payment(subscription_id)
if not success:
raise HTTPException(status_code=400, detail=f"Subscription verification failed: {result}")
# Get the plan ID from the subscription to determine tier
plan_id = result.get("plan_id", "")
# Connect to DB to get the tier for this plan
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("SELECT tier FROM paypal_plans WHERE plan_id = ?", (plan_id,))
tier_result = cursor.fetchone()
conn.close()
if not tier_result:
raise HTTPException(status_code=400, detail="Could not determine subscription tier")
tier = tier_result[0]
# Update the user's subscription
success, update_result = update_user_subscription(current_user.email, subscription_id, tier)
if not success:
raise HTTPException(status_code=500, detail=f"Failed to update subscription: {update_result}")
return {
"message": f"Successfully subscribed to {tier} tier",
"subscription_id": subscription_id,
"status": result.get("status", ""),
"next_billing_time": result.get("billing_info", {}).get("next_billing_time", "")
}
except HTTPException:
raise
except Exception as e:
print(f"Subscription verification error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Subscription verification failed: {str(e)}")
@app.post("/webhook/paypal")
async def paypal_webhook(request: Request):
"""Handle PayPal subscription webhooks"""
try:
payload = await request.json()
logger.info(f"Received PayPal webhook: {payload.get('event_type', 'unknown event')}")
# Process the webhook
result = handle_subscription_webhook(payload)
return {"status": "success", "message": "Webhook processed"}
except Exception as e:
logger.error(f"Webhook processing error: {str(e)}")
# Return 200 even on error to acknowledge receipt to PayPal
return {"status": "error", "message": str(e)}
# Add this to your startup code
@app.on_event("startup")
async def startup_event():
"""Initialize subscription plans on startup"""
try:
# Initialize PayPal subscription plans if needed
# If you have an initialize_subscription_plans function in your paypal_integration.py,
# you can call it here
print("Application started successfully")
except Exception as e:
print(f"Error during startup: {str(e)}")
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
host = os.environ.get("HOST", "0.0.0.0")
uvicorn.run("app:app", host=host, port=port, reload=True) |