File size: 2,402 Bytes
ff72db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import asyncio
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
async def process_and_store_file(file_path, user_id, websocket=None, upload_directory="./uploaded_files"):
try:
# 1. PDF νμΌ λ‘λ
if websocket:
await websocket.send_text("1. PDF νμΌ λ‘λ μ€...")
loader = PyPDFLoader(file_path)
documents = loader.load()
if websocket:
await websocket.send_text(f"PDF νμΌ λ‘λ μλ£: {len(documents)} λ¬Έμ")
except Exception as e:
if websocket:
await websocket.send_text(f"PDF νμΌ λ‘λ μ€λ₯: {e}")
return
try:
# 2. ν
μ€νΈ λΆν
if websocket:
await websocket.send_text("2. ν
μ€νΈ λΆν μ€...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
docs = text_splitter.split_documents(documents)
if websocket:
await websocket.send_text(f"ν
μ€νΈ λΆν μλ£: {len(docs)} μ²ν¬")
except Exception as e:
if websocket:
await websocket.send_text(f"ν
μ€νΈ λΆν μ€λ₯: {e}")
return
try:
# 3. μλ² λ© μμ± λ° λ²‘ν°ν
if websocket:
await websocket.send_text("3. μλ² λ© μμ± λ° λ²‘ν°ν μ€...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
vectors = FAISS.from_documents(docs, embeddings)
# 4. λ²‘ν° μ μ₯
db_path = os.path.join(upload_directory, "faiss_index")
vectors.save_local(db_path)
if websocket:
await websocket.send_text(f"FAISS μΈλ±μ€ μ μ₯ μλ£: {db_path}")
except Exception as e:
if websocket:
await websocket.send_text(f"벑ν°ν μ€λ₯: {e}")
return
finally:
# 5. νμΌ μμ
try:
if os.path.exists(file_path):
os.remove(file_path)
if websocket:
await websocket.send_text(f"νμΌ μμ μλ£: {file_path}")
except Exception as e:
if websocket:
await websocket.send_text(f"νμΌ μμ μ€λ₯: {e}")
|