File size: 4,400 Bytes
cd6f25f
 
 
 
d2c787a
cd6f25f
d2c787a
 
cd6f25f
 
 
 
 
d2c787a
 
 
 
 
 
 
 
 
cd6f25f
9a77e12
 
 
 
 
 
d2c787a
cd6f25f
 
 
 
 
 
 
 
6e17b00
 
 
 
 
 
 
cd6f25f
 
 
0d012be
cd6f25f
 
 
 
 
 
 
 
5ecc655
7993b36
5ecc655
d2c787a
5ecc655
40885a7
 
da413e9
bc2d7bb
0cb2b69
5ecc655
d14052c
fb60a3b
bc2d7bb
 
0cb2b69
5ecc655
d14052c
4603974
cd6f25f
 
 
d2c787a
cd6f25f
3da25bf
 
feec3e5
 
 
cd6f25f
 
 
 
 
 
d2c787a
 
cd6f25f
d2c787a
fb60a3b
cd6f25f
f9eccf3
cd6f25f
e58ee8f
40885a7
 
fb60a3b
d2c787a
 
 
35e9e5a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import json
from datetime import datetime

import gradio as gr
from openai import OpenAI


def print_now(msg):
    now = datetime.now()
    formatted_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    print(f"{msg}:{formatted_time}")
    return formatted_time

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    try:
        weekdays = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
        now = datetime.now()
        weekday_num = now.weekday()
        weekday_chinese = weekdays[weekday_num]
        formatted_time = now.strftime("%Y-%m-%d %H:%M:%S") + " " + weekday_chinese
        default_system = f"你是一个由腾讯开发的有用的人工智能助手,你的名字是“腾讯元宝”,简称“元宝”,你的英文名是“Tencent Yuanbao”,你乐于帮助大家解答问题。\n现在的时间是{formatted_time}"

        messages = [{"Role": "system", "Content": default_system}]
        client = OpenAI(
            api_key=os.getenv('HUNYUAN_API_KEY'),
            base_url="https://api.hunyuan.cloud.tencent.com/v1",
        )
        for val in history:
            if val[0] and val[1]:
                messages.append({"Role": "user", "Content": val[0]})
                pure_response = val[1].split("'> **End thinking**\n\n'")[-1].strip()
                messages.append({"Role": "assistant", "Content": pure_response})
                if message in ["aaaaa", "bbbbb", "ccccc"]:
                    print("pure_response:" + pure_response)
                    print("val[0]:" + val[0])
                    print("val[1]" + val[1])
                
        
        messages.append({"Role": "user", "Content": message})
        completion = client.chat.completions.create(
            model="hunyuan-t1-latest",
            messages=messages,
            stream=True,
            extra_body={
            "stream_moderation": True,
            "enable_enhancement": False,
            }
        )
        response = ""
        is_reasoning_start = True
        is_reasoning_end = True
        

        for event in completion:
            if message in ["aaaaa", "bbbbb", "ccccc"]:
                print(f"event:{event}")
            if hasattr(event.choices[0].delta, 'reasoning_content'):
                if is_reasoning_start:
                    response += '> **Start thinking**\n\n'
                    is_reasoning_start = False
                token = event.choices[0].delta.reasoning_content# Wrap reasoning_content in a span with a lighter color
                response += token
            else:
                if is_reasoning_end:
                    response += '> **End thinking**\n\n'
                    is_reasoning_end = False
                token = event.choices[0].delta.content# Wrap content in a span with a normal color
                response += token
            yield response
    except Exception as e:
        raise gr.Error(f"发生错误: {str(e)}")

example_prompts = [
    ["Write a short papragraph where the 1st letter of each sentence spells out the word 'CODE'. The message should appear natural and not obviously hide this pattern."],
    ["Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions."],
    ["Why has online learning been able to spread rapidly in recent years?"],
    ["How many 'e' in Deeplearning?"],
    ["Write a 3-line poem"]
]
latex_delimiters = [
    {"left": "$$", "right": "$$", "display": True},
    {"left": "\\[", "right": "\\]", "display": True},{"left": "$", "right": "$", "display": False},
    {"left": "\\(", "right": "\\)", "display": False}
]


chatbot = gr.Chatbot(latex_delimiters=latex_delimiters, scale=9)


demo = gr.ChatInterface(respond,
    title="Hunyuan T1",
    examples=example_prompts,
    chatbot=chatbot,
    description="当前体验demo为非联网Hunyuan-T1 最新推理模型,完整版联网/非联网能力即将在元宝上线,敬请期待! 
The current experience demo is the latest offline inference model of Hunyuan-T1. The full version with both online and offline capabilities will be launched on Tencent Yuanbao soon. Please look forward to it."                    

)

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=100)
    demo.launch(max_threads=100)