Spaces:
Running
Running
File size: 4,400 Bytes
cd6f25f d2c787a cd6f25f d2c787a cd6f25f d2c787a cd6f25f 9a77e12 d2c787a cd6f25f 6e17b00 cd6f25f 0d012be cd6f25f 5ecc655 7993b36 5ecc655 d2c787a 5ecc655 40885a7 da413e9 bc2d7bb 0cb2b69 5ecc655 d14052c fb60a3b bc2d7bb 0cb2b69 5ecc655 d14052c 4603974 cd6f25f d2c787a cd6f25f 3da25bf feec3e5 cd6f25f d2c787a cd6f25f d2c787a fb60a3b cd6f25f f9eccf3 cd6f25f e58ee8f 40885a7 fb60a3b d2c787a 35e9e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import os
import json
from datetime import datetime
import gradio as gr
from openai import OpenAI
def print_now(msg):
now = datetime.now()
formatted_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{msg}:{formatted_time}")
return formatted_time
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
try:
weekdays = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
now = datetime.now()
weekday_num = now.weekday()
weekday_chinese = weekdays[weekday_num]
formatted_time = now.strftime("%Y-%m-%d %H:%M:%S") + " " + weekday_chinese
default_system = f"你是一个由腾讯开发的有用的人工智能助手,你的名字是“腾讯元宝”,简称“元宝”,你的英文名是“Tencent Yuanbao”,你乐于帮助大家解答问题。\n现在的时间是{formatted_time}"
messages = [{"Role": "system", "Content": default_system}]
client = OpenAI(
api_key=os.getenv('HUNYUAN_API_KEY'),
base_url="https://api.hunyuan.cloud.tencent.com/v1",
)
for val in history:
if val[0] and val[1]:
messages.append({"Role": "user", "Content": val[0]})
pure_response = val[1].split("'> **End thinking**\n\n'")[-1].strip()
messages.append({"Role": "assistant", "Content": pure_response})
if message in ["aaaaa", "bbbbb", "ccccc"]:
print("pure_response:" + pure_response)
print("val[0]:" + val[0])
print("val[1]" + val[1])
messages.append({"Role": "user", "Content": message})
completion = client.chat.completions.create(
model="hunyuan-t1-latest",
messages=messages,
stream=True,
extra_body={
"stream_moderation": True,
"enable_enhancement": False,
}
)
response = ""
is_reasoning_start = True
is_reasoning_end = True
for event in completion:
if message in ["aaaaa", "bbbbb", "ccccc"]:
print(f"event:{event}")
if hasattr(event.choices[0].delta, 'reasoning_content'):
if is_reasoning_start:
response += '> **Start thinking**\n\n'
is_reasoning_start = False
token = event.choices[0].delta.reasoning_content# Wrap reasoning_content in a span with a lighter color
response += token
else:
if is_reasoning_end:
response += '> **End thinking**\n\n'
is_reasoning_end = False
token = event.choices[0].delta.content# Wrap content in a span with a normal color
response += token
yield response
except Exception as e:
raise gr.Error(f"发生错误: {str(e)}")
example_prompts = [
["Write a short papragraph where the 1st letter of each sentence spells out the word 'CODE'. The message should appear natural and not obviously hide this pattern."],
["Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions."],
["Why has online learning been able to spread rapidly in recent years?"],
["How many 'e' in Deeplearning?"],
["Write a 3-line poem"]
]
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "\\[", "right": "\\]", "display": True},{"left": "$", "right": "$", "display": False},
{"left": "\\(", "right": "\\)", "display": False}
]
chatbot = gr.Chatbot(latex_delimiters=latex_delimiters, scale=9)
demo = gr.ChatInterface(respond,
title="Hunyuan T1",
examples=example_prompts,
chatbot=chatbot,
description="当前体验demo为非联网Hunyuan-T1 最新推理模型,完整版联网/非联网能力即将在元宝上线,敬请期待!
The current experience demo is the latest offline inference model of Hunyuan-T1. The full version with both online and offline capabilities will be launched on Tencent Yuanbao soon. Please look forward to it."
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=100)
demo.launch(max_threads=100) |