Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,262 Bytes
b155b2e e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import inspect
from typing import Any, Dict, Optional
from typing import Any, Dict, List, Optional, Tuple, Union
import os
import torch
import numpy as np
from PIL import Image
import diffusers
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
XFormersAttnProcessor,
AttnProcessor2_0
)
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
EulerAncestralDiscreteScheduler,
UNet2DConditionModel,
ImagePipelineOutput
)
import transformers
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModelWithProjection,
CLIPTextModelWithProjection
)
from .utils import to_rgb_image, white_out_background, recenter_img
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import Hunyuan3d_MVD_XL_Pipeline
>>> pipe = Hunyuan3d_MVD_XL_Pipeline.from_pretrained(
... "Tencent-Hunyuan-3D/MVD-XL", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> img = Image.open("demo.png")
>>> res_img = pipe(img).images[0]
```
"""
def scale_latents(latents): return (latents - 0.22) * 0.75
def unscale_latents(latents): return (latents / 0.75) + 0.22
def scale_image(image): return (image - 0.5) / 0.5
def scale_image_2(image): return (image * 0.5) / 0.8
def unscale_image(image): return (image * 0.5) + 0.5
def unscale_image_2(image): return (image * 0.8) / 0.5
class ReferenceOnlyAttnProc(torch.nn.Module):
def __init__(self, chained_proc, enabled=False, name=None):
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None):
encoder_hidden_states = hidden_states if encoder_hidden_states is None else encoder_hidden_states
if self.enabled:
if mode == 'w': ref_dict[self.name] = encoder_hidden_states
elif mode == 'r': encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
else: raise Exception(f"mode should not be {mode}")
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
class RefOnlyNoisedUNet(torch.nn.Module):
def __init__(self, unet, scheduler) -> None:
super().__init__()
self.unet = unet
self.scheduler = scheduler
unet_attn_procs = dict()
for name, _ in unet.attn_processors.items():
if torch.__version__ >= '2.0': default_attn_proc = AttnProcessor2_0()
elif is_xformers_available(): default_attn_proc = XFormersAttnProcessor()
else: default_attn_proc = AttnProcessor()
unet_attn_procs[name] = ReferenceOnlyAttnProc(
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
)
unet.set_attn_processor(unet_attn_procs)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
class_labels: Optional[torch.Tensor] = None,
down_block_res_samples: Optional[Tuple[torch.Tensor]] = None,
mid_block_res_sample: Optional[Tuple[torch.Tensor]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
return_dict: bool = True,
**kwargs
):
dtype = self.unet.dtype
# cond_lat add same level noise
cond_lat = cross_attention_kwargs['cond_lat']
noise = torch.randn_like(cond_lat)
noisy_cond_lat = self.scheduler.add_noise(cond_lat, noise, timestep.reshape(-1))
noisy_cond_lat = self.scheduler.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
ref_dict = {}
_ = self.unet(
noisy_cond_lat,
timestep,
encoder_hidden_states = encoder_hidden_states,
class_labels = class_labels,
cross_attention_kwargs = dict(mode="w", ref_dict=ref_dict),
added_cond_kwargs = added_cond_kwargs,
return_dict = return_dict,
**kwargs
)
res = self.unet(
sample,
timestep,
encoder_hidden_states,
class_labels=class_labels,
cross_attention_kwargs = dict(mode="r", ref_dict=ref_dict),
down_block_additional_residuals = [
sample.to(dtype=dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual = (
mid_block_res_sample.to(dtype=dtype)
if mid_block_res_sample is not None else None),
added_cond_kwargs = added_cond_kwargs,
return_dict = return_dict,
**kwargs
)
return res
class HunYuan3D_MVD_Std_Pipeline(diffusers.DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
feature_extractor_vae: CLIPImageProcessor,
vision_processor: CLIPImageProcessor,
vision_encoder: CLIPVisionModelWithProjection,
vision_encoder_2: CLIPVisionModelWithProjection,
ramping_coefficients: Optional[list] = None,
add_watermarker: Optional[bool] = None,
safety_checker = None,
):
DiffusionPipeline.__init__(self)
self.register_modules(
vae=vae, unet=unet, scheduler=scheduler, safety_checker=None, feature_extractor_vae=feature_extractor_vae,
vision_processor=vision_processor, vision_encoder=vision_encoder, vision_encoder_2=vision_encoder_2,
)
self.register_to_config( ramping_coefficients = ramping_coefficients)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
self.watermark = None
self.prepare_init = False
def prepare(self):
assert isinstance(self.unet, UNet2DConditionModel), "unet should be UNet2DConditionModel"
self.unet = RefOnlyNoisedUNet(self.unet, self.scheduler).eval()
self.prepare_init = True
def encode_image(self, image: torch.Tensor, scale_factor: bool = False):
latent = self.vae.encode(image).latent_dist.sample()
return (latent * self.vae.config.scaling_factor) if scale_factor else latent
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _get_add_time_ids(
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, " \
f"but a vector of {passed_add_embed_dim} was created. The model has an incorrect config." \
f" Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta: extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator: extra_step_kwargs["generator"] = generator
return extra_step_kwargs
@property
def guidance_scale(self):
return self._guidance_scale
@property
def interrupt(self):
return self._interrupt
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@torch.no_grad()
def __call__(
self,
image: Image.Image = None,
guidance_scale = 2.0,
output_type: Optional[str] = "pil",
num_inference_steps: int = 50,
return_dict: bool = True,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
latent: torch.Tensor = None,
guidance_curve = None,
**kwargs
):
if not self.prepare_init:
self.prepare()
here = dict(device=self.vae.device, dtype=self.vae.dtype)
batch_size = 1
num_images_per_prompt = 1
width, height = 512 * 2, 512 * 3
target_size = original_size = (height, width)
self._guidance_scale = guidance_scale
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
device = self._execution_device
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
self.vae.dtype,
device,
generator,
latents=latent,
)
# Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare added time ids & embeddings
text_encoder_projection_dim = 1280
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=self.vae.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
negative_add_time_ids = add_time_ids
# hw: preprocess
cond_image = recenter_img(image)
cond_image = to_rgb_image(image)
image_vae = self.feature_extractor_vae(images=cond_image, return_tensors="pt").pixel_values.to(**here)
image_clip = self.vision_processor(images=cond_image, return_tensors="pt").pixel_values.to(**here)
# hw: get cond_lat from cond_img using vae
cond_lat = self.encode_image(image_vae, scale_factor=False)
negative_lat = self.encode_image(torch.zeros_like(image_vae), scale_factor=False)
cond_lat = torch.cat([negative_lat, cond_lat])
# hw: get visual global embedding using clip
global_embeds_1 = self.vision_encoder(image_clip, output_hidden_states=False).image_embeds.unsqueeze(-2)
global_embeds_2 = self.vision_encoder_2(image_clip, output_hidden_states=False).image_embeds.unsqueeze(-2)
global_embeds = torch.concat([global_embeds_1, global_embeds_2], dim=-1)
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
prompt_embeds = self.uc_text_emb.to(**here)
pooled_prompt_embeds = self.uc_text_emb_2.to(**here)
prompt_embeds = prompt_embeds + global_embeds * ramp
add_text_embeds = pooled_prompt_embeds
if self.do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
timestep_cond = None
self._num_timesteps = len(timesteps)
if guidance_curve is None:
guidance_curve = lambda t: guidance_scale
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=dict(cond_lat=cond_lat),
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
# cur_guidance_scale = self.guidance_scale
cur_guidance_scale = guidance_curve(t) # 1.5 + 2.5 * ((t/1000)**2)
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cur_guidance_scale * (noise_pred_text - noise_pred_uncond)
# cur_guidance_scale_topleft = (cur_guidance_scale - 1.0) * 4 + 1.0
# noise_pred_top_left = noise_pred_uncond +
# cur_guidance_scale_topleft * (noise_pred_text - noise_pred_uncond)
# _, _, h, w = noise_pred.shape
# noise_pred[:, :, :h//3, :w//2] = noise_pred_top_left[:, :, :h//3, :w//2]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
latents = unscale_latents(latents)
if output_type=="latent":
image = latents
else:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = unscale_image(unscale_image_2(image)).clamp(0, 1)
image = [
Image.fromarray((image[0]*255+0.5).clamp_(0, 255).permute(1, 2, 0).cpu().numpy().astype("uint8")),
# self.image_processor.postprocess(image, output_type=output_type)[0],
cond_image.resize((512, 512))
]
if not return_dict: return (image,)
return ImagePipelineOutput(images=image)
def save_pretrained(self, save_directory):
# uc_text_emb.pt and uc_text_emb_2.pt are inferenced and saved in advance
super().save_pretrained(save_directory)
torch.save(self.uc_text_emb, os.path.join(save_directory, "uc_text_emb.pt"))
torch.save(self.uc_text_emb_2, os.path.join(save_directory, "uc_text_emb_2.pt"))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
# uc_text_emb.pt and uc_text_emb_2.pt are inferenced and saved in advance
pipeline = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
pipeline.uc_text_emb = torch.load(os.path.join(pretrained_model_name_or_path, "uc_text_emb.pt"))
pipeline.uc_text_emb_2 = torch.load(os.path.join(pretrained_model_name_or_path, "uc_text_emb_2.pt"))
return pipeline
|