Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,155 Bytes
e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import os
import math
import numpy as np
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj
from .typing import *
def get_rank():
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
# therefore LOCAL_RANK needs to be checked first
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def reflect(x, n):
return 2 * dot(x, n) * n - x
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
def scale_tensor(
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, Tensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
class SpecifyGradient(Function):
# Implementation from stable-dreamfusion
# https://github.com/ashawkey/stable-dreamfusion
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
(gt_grad,) = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
if triplane is not None:
out_chunk = func(triplane=triplane,
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
else:
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
) -> Float[Tensor, "H W 3"]:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions: Float[Tensor, "H W 3"] = torch.stack(
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
)
return directions
def get_rays(
directions: Float[Tensor, "... 3"],
c2w: Float[Tensor, "... 4 4"],
keepdim=False,
noise_scale=0.0,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_projection_matrix(
fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "B 4 4"]:
batch_size = fovy.shape[0]
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
proj_mtx[:, 3, 2] = -1.0
return proj_mtx
def get_mvp_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
# calculate w2c from c2w: R' = Rt, t' = -Rt * t
# mathematically equivalent to (c2w)^-1
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
w2c[:, 3, 3] = 1.0
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
mvp_mtx = proj_mtx @ w2c
return mvp_mtx
def get_full_projection_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0)
# gaussian splatting functions
def convert_pose(C2W):
flip_yz = torch.eye(4, device=C2W.device)
flip_yz[1, 1] = -1
flip_yz[2, 2] = -1
C2W = torch.matmul(C2W, flip_yz)
return C2W
def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4, device=device)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def get_fov_gaussian(P):
tanHalfFovX = 1 / P[0, 0]
tanHalfFovY = 1 / P[1, 1]
fovY = math.atan(tanHalfFovY) * 2
fovX = math.atan(tanHalfFovX) * 2
return fovX, fovY
def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar):
c2w = convert_pose(c2w)
world_view_transform = torch.inverse(c2w)
world_view_transform = world_view_transform.transpose(0, 1).cuda().float()
projection_matrix = (
get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy)
.transpose(0, 1)
.cuda()
)
full_proj_transform = (
world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))
).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
return world_view_transform, full_proj_transform, camera_center
def binary_cross_entropy(input, target):
"""
F.binary_cross_entropy is not numerically stable in mixed-precision training.
"""
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean()
def tet_sdf_diff(
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"]
) -> Float[Tensor, ""]:
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()
) + F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()
)
return sdf_diff
# Implementation from Latent-NeRF
# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py
class MeshOBJ:
dx = torch.zeros(3).float()
dx[0] = 1
dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]]
dx, dy, dz = dx[None, :], dy[None, :], dz[None, :]
def __init__(self, v: np.ndarray, f: np.ndarray):
self.v = v
self.f = f
self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz
self.v_tensor = torch.from_numpy(self.v)
vf = self.v[self.f, :]
self.f_center = vf.mean(axis=1)
self.f_center_tensor = torch.from_numpy(self.f_center).float()
e1 = vf[:, 1, :] - vf[:, 0, :]
e2 = vf[:, 2, :] - vf[:, 0, :]
self.face_normals = np.cross(e1, e2)
self.face_normals = (
self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None]
)
self.face_normals_tensor = torch.from_numpy(self.face_normals)
def normalize_mesh(self, target_scale=0.5):
verts = self.v
# Compute center of bounding box
# center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
center = verts.mean(axis=0)
verts = verts - center
scale = np.max(np.linalg.norm(verts, axis=1))
verts = (verts / scale) * target_scale
return MeshOBJ(verts, self.f)
def winding_number(self, query: torch.Tensor):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
target_alphas = fast_winding_number_for_meshes(
self.v.astype(np.float32), self.f, query_np
)
return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device)
def gaussian_weighted_distance(self, query: torch.Tensor, sigma):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
distances, _, _ = point_mesh_squared_distance(
query_np, self.v.astype(np.float32), self.f
)
distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device)
weight = torch.exp(-(distances / (2 * sigma**2)))
return weight
def ce_pq_loss(p, q, weight=None):
def clamp(v, T=0.0001):
return v.clamp(T, 1 - T)
p = p.view(q.shape)
ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q)))
if weight is not None:
ce *= weight
return ce.sum()
class ShapeLoss(nn.Module):
def __init__(self, guide_shape):
super().__init__()
self.mesh_scale = 0.7
self.proximal_surface = 0.3
self.delta = 0.2
self.shape_path = guide_shape
v, _, _, f, _, _ = read_obj(self.shape_path, float)
mesh = MeshOBJ(v, f)
matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array(
[[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
)
self.sketchshape = mesh.normalize_mesh(self.mesh_scale)
self.sketchshape = MeshOBJ(
np.ascontiguousarray(
(matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0)
),
f,
)
def forward(self, xyzs, sigmas):
mesh_occ = self.sketchshape.winding_number(xyzs)
if self.proximal_surface > 0:
weight = 1 - self.sketchshape.gaussian_weighted_distance(
xyzs, self.proximal_surface
)
else:
weight = None
indicator = (mesh_occ > 0.5).float()
nerf_occ = 1 - torch.exp(-self.delta * sigmas)
nerf_occ = nerf_occ.clamp(min=0, max=1.1)
loss = ce_pq_loss(
nerf_occ, indicator, weight=weight
) # order is important for CE loss + second argument may not be optimized
return loss
def shifted_expotional_decay(a, b, c, r):
return a * torch.exp(-b * r) + c
def shifted_cosine_decay(a, b, c, r):
return a * torch.cos(b * r + c) + a
def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]):
# get the component of x that is perpendicular to y
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6
return (
x
- (
torch.mul(x, y).sum(dim=[1, 2, 3])
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps)
).view(-1, 1, 1, 1)
* y
)
def validate_empty_rays(ray_indices, t_start, t_end):
if ray_indices.nelement() == 0:
print("Warn Empty rays_indices!")
ray_indices = torch.LongTensor([0]).to(ray_indices)
t_start = torch.Tensor([0]).to(ray_indices)
t_end = torch.Tensor([0]).to(ray_indices)
return ray_indices, t_start, t_end
|