File size: 18,155 Bytes
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import os
import math
import numpy as np
from collections import defaultdict

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj

from .typing import *


def get_rank():
    # SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
    # therefore LOCAL_RANK needs to be checked first
    rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
    for key in rank_keys:
        rank = os.environ.get(key)
        if rank is not None:
            return int(rank)
    return 0

def dot(x, y):
    return torch.sum(x * y, -1, keepdim=True)


def reflect(x, n):
    return 2 * dot(x, n) * n - x


ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]


def scale_tensor(
    dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
    if inp_scale is None:
        inp_scale = (0, 1)
    if tgt_scale is None:
        tgt_scale = (0, 1)
    if isinstance(tgt_scale, Tensor):
        assert dat.shape[-1] == tgt_scale.shape[-1]
    dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
    dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
    return dat


class _TruncExp(Function):  # pylint: disable=abstract-method
    # Implementation from torch-ngp:
    # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, x):  # pylint: disable=arguments-differ
        ctx.save_for_backward(x)
        return torch.exp(x)

    @staticmethod
    @custom_bwd
    def backward(ctx, g):  # pylint: disable=arguments-differ
        x = ctx.saved_tensors[0]
        return g * torch.exp(torch.clamp(x, max=15))


class SpecifyGradient(Function):
    # Implementation from stable-dreamfusion
    # https://github.com/ashawkey/stable-dreamfusion
    @staticmethod
    @custom_fwd
    def forward(ctx, input_tensor, gt_grad):
        ctx.save_for_backward(gt_grad)
        # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
        return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_scale):
        (gt_grad,) = ctx.saved_tensors
        gt_grad = gt_grad * grad_scale
        return gt_grad, None


trunc_exp = _TruncExp.apply


def get_activation(name) -> Callable:
    if name is None:
        return lambda x: x
    name = name.lower()
    if name == "none":
        return lambda x: x
    elif name == "lin2srgb":
        return lambda x: torch.where(
            x > 0.0031308,
            torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
            12.92 * x,
        ).clamp(0.0, 1.0)
    elif name == "exp":
        return lambda x: torch.exp(x)
    elif name == "shifted_exp":
        return lambda x: torch.exp(x - 1.0)
    elif name == "trunc_exp":
        return trunc_exp
    elif name == "shifted_trunc_exp":
        return lambda x: trunc_exp(x - 1.0)
    elif name == "sigmoid":
        return lambda x: torch.sigmoid(x)
    elif name == "tanh":
        return lambda x: torch.tanh(x)
    elif name == "shifted_softplus":
        return lambda x: F.softplus(x - 1.0)
    elif name == "scale_-11_01":
        return lambda x: x * 0.5 + 0.5
    else:
        try:
            return getattr(F, name)
        except AttributeError:
            raise ValueError(f"Unknown activation function: {name}")


def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any:
    if chunk_size <= 0:
        return func(*args, **kwargs)
    B = None
    for arg in list(args) + list(kwargs.values()):
        if isinstance(arg, torch.Tensor):
            B = arg.shape[0]
            break
    assert (
        B is not None
    ), "No tensor found in args or kwargs, cannot determine batch size."
    out = defaultdict(list)
    out_type = None
    # max(1, B) to support B == 0
    for i in range(0, max(1, B), chunk_size):
        if triplane is not None:
            out_chunk = func(triplane=triplane,
                *[
                    arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                    for arg in args
                ],
                **{
                    k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                    for k, arg in kwargs.items()
                },
            )
        else:
            out_chunk = func(
                *[
                    arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                    for arg in args
                ],
                **{
                    k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                    for k, arg in kwargs.items()
                },
            )
        if out_chunk is None:
            continue
        out_type = type(out_chunk)
        if isinstance(out_chunk, torch.Tensor):
            out_chunk = {0: out_chunk}
        elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
            chunk_length = len(out_chunk)
            out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
        elif isinstance(out_chunk, dict):
            pass
        else:
            print(
                f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
            )
            exit(1)
        for k, v in out_chunk.items():
            v = v if torch.is_grad_enabled() else v.detach()
            out[k].append(v)

    if out_type is None:
        return None

    out_merged: Dict[Any, Optional[torch.Tensor]] = {}
    for k, v in out.items():
        if all([vv is None for vv in v]):
            # allow None in return value
            out_merged[k] = None
        elif all([isinstance(vv, torch.Tensor) for vv in v]):
            out_merged[k] = torch.cat(v, dim=0)
        else:
            raise TypeError(
                f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
            )

    if out_type is torch.Tensor:
        return out_merged[0]
    elif out_type in [tuple, list]:
        return out_type([out_merged[i] for i in range(chunk_length)])
    elif out_type is dict:
        return out_merged


def get_ray_directions(
    H: int,
    W: int,
    focal: Union[float, Tuple[float, float]],
    principal: Optional[Tuple[float, float]] = None,
    use_pixel_centers: bool = True,
) -> Float[Tensor, "H W 3"]:
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems

    Inputs:
        H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    pixel_center = 0.5 if use_pixel_centers else 0

    if isinstance(focal, float):
        fx, fy = focal, focal
        cx, cy = W / 2, H / 2
    else:
        fx, fy = focal
        assert principal is not None
        cx, cy = principal

    i, j = torch.meshgrid(
        torch.arange(W, dtype=torch.float32) + pixel_center,
        torch.arange(H, dtype=torch.float32) + pixel_center,
        indexing="xy",
    )

    directions: Float[Tensor, "H W 3"] = torch.stack(
        [(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
    )

    return directions


def get_rays(
    directions: Float[Tensor, "... 3"],
    c2w: Float[Tensor, "... 4 4"],
    keepdim=False,
    noise_scale=0.0,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
    # Rotate ray directions from camera coordinate to the world coordinate
    assert directions.shape[-1] == 3

    if directions.ndim == 2:  # (N_rays, 3)
        if c2w.ndim == 2:  # (4, 4)
            c2w = c2w[None, :, :]
        assert c2w.ndim == 3  # (N_rays, 4, 4) or (1, 4, 4)
        rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1)  # (N_rays, 3)
        rays_o = c2w[:, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 3:  # (H, W, 3)
        assert c2w.ndim in [2, 3]
        if c2w.ndim == 2:  # (4, 4)
            rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
                -1
            )  # (H, W, 3)
            rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
        elif c2w.ndim == 3:  # (B, 4, 4)
            rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
                -1
            )  # (B, H, W, 3)
            rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 4:  # (B, H, W, 3)
        assert c2w.ndim == 3  # (B, 4, 4)
        rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
            -1
        )  # (B, H, W, 3)
        rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)

    # add camera noise to avoid grid-like artifect
    # https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
    if noise_scale > 0:
        rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
        rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale

    rays_d = F.normalize(rays_d, dim=-1)
    if not keepdim:
        rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)

    return rays_o, rays_d


def get_projection_matrix(
    fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "B 4 4"]:
    batch_size = fovy.shape[0]
    proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
    proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
    proj_mtx[:, 1, 1] = -1.0 / torch.tan(
        fovy / 2.0
    )  # add a negative sign here as the y axis is flipped in nvdiffrast output
    proj_mtx[:, 2, 2] = -(far + near) / (far - near)
    proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
    proj_mtx[:, 3, 2] = -1.0
    return proj_mtx


def get_mvp_matrix(
    c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
    # calculate w2c from c2w: R' = Rt, t' = -Rt * t
    # mathematically equivalent to (c2w)^-1
    w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
    w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
    w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
    w2c[:, 3, 3] = 1.0
    # calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
    mvp_mtx = proj_mtx @ w2c
    return mvp_mtx


def get_full_projection_matrix(
    c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
    return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0)


# gaussian splatting functions
def convert_pose(C2W):
    flip_yz = torch.eye(4, device=C2W.device)
    flip_yz[1, 1] = -1
    flip_yz[2, 2] = -1
    C2W = torch.matmul(C2W, flip_yz)
    return C2W


def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"):
    tanHalfFovY = math.tan((fovY / 2))
    tanHalfFovX = math.tan((fovX / 2))

    top = tanHalfFovY * znear
    bottom = -top
    right = tanHalfFovX * znear
    left = -right

    P = torch.zeros(4, 4, device=device)

    z_sign = 1.0

    P[0, 0] = 2.0 * znear / (right - left)
    P[1, 1] = 2.0 * znear / (top - bottom)
    P[0, 2] = (right + left) / (right - left)
    P[1, 2] = (top + bottom) / (top - bottom)
    P[3, 2] = z_sign
    P[2, 2] = z_sign * zfar / (zfar - znear)
    P[2, 3] = -(zfar * znear) / (zfar - znear)
    return P


def get_fov_gaussian(P):
    tanHalfFovX = 1 / P[0, 0]
    tanHalfFovY = 1 / P[1, 1]
    fovY = math.atan(tanHalfFovY) * 2
    fovX = math.atan(tanHalfFovX) * 2
    return fovX, fovY


def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar):
    c2w = convert_pose(c2w)
    world_view_transform = torch.inverse(c2w)

    world_view_transform = world_view_transform.transpose(0, 1).cuda().float()
    projection_matrix = (
        get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy)
        .transpose(0, 1)
        .cuda()
    )
    full_proj_transform = (
        world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))
    ).squeeze(0)
    camera_center = world_view_transform.inverse()[3, :3]

    return world_view_transform, full_proj_transform, camera_center


def binary_cross_entropy(input, target):
    """
    F.binary_cross_entropy is not numerically stable in mixed-precision training.
    """
    return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean()


def tet_sdf_diff(
    vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"]
) -> Float[Tensor, ""]:
    sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2)
    mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
    sdf_f1x6x2 = sdf_f1x6x2[mask]
    sdf_diff = F.binary_cross_entropy_with_logits(
        sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()
    ) + F.binary_cross_entropy_with_logits(
        sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()
    )
    return sdf_diff


# Implementation from Latent-NeRF
# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py
class MeshOBJ:
    dx = torch.zeros(3).float()
    dx[0] = 1
    dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]]
    dx, dy, dz = dx[None, :], dy[None, :], dz[None, :]

    def __init__(self, v: np.ndarray, f: np.ndarray):
        self.v = v
        self.f = f
        self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz
        self.v_tensor = torch.from_numpy(self.v)

        vf = self.v[self.f, :]
        self.f_center = vf.mean(axis=1)
        self.f_center_tensor = torch.from_numpy(self.f_center).float()

        e1 = vf[:, 1, :] - vf[:, 0, :]
        e2 = vf[:, 2, :] - vf[:, 0, :]
        self.face_normals = np.cross(e1, e2)
        self.face_normals = (
            self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None]
        )
        self.face_normals_tensor = torch.from_numpy(self.face_normals)

    def normalize_mesh(self, target_scale=0.5):
        verts = self.v

        # Compute center of bounding box
        # center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
        center = verts.mean(axis=0)
        verts = verts - center
        scale = np.max(np.linalg.norm(verts, axis=1))
        verts = (verts / scale) * target_scale

        return MeshOBJ(verts, self.f)

    def winding_number(self, query: torch.Tensor):
        device = query.device
        shp = query.shape
        query_np = query.detach().cpu().reshape(-1, 3).numpy()
        target_alphas = fast_winding_number_for_meshes(
            self.v.astype(np.float32), self.f, query_np
        )
        return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device)

    def gaussian_weighted_distance(self, query: torch.Tensor, sigma):
        device = query.device
        shp = query.shape
        query_np = query.detach().cpu().reshape(-1, 3).numpy()
        distances, _, _ = point_mesh_squared_distance(
            query_np, self.v.astype(np.float32), self.f
        )
        distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device)
        weight = torch.exp(-(distances / (2 * sigma**2)))
        return weight


def ce_pq_loss(p, q, weight=None):
    def clamp(v, T=0.0001):
        return v.clamp(T, 1 - T)

    p = p.view(q.shape)
    ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q)))
    if weight is not None:
        ce *= weight
    return ce.sum()


class ShapeLoss(nn.Module):
    def __init__(self, guide_shape):
        super().__init__()
        self.mesh_scale = 0.7
        self.proximal_surface = 0.3
        self.delta = 0.2
        self.shape_path = guide_shape
        v, _, _, f, _, _ = read_obj(self.shape_path, float)
        mesh = MeshOBJ(v, f)
        matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array(
            [[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
        )
        self.sketchshape = mesh.normalize_mesh(self.mesh_scale)
        self.sketchshape = MeshOBJ(
            np.ascontiguousarray(
                (matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0)
            ),
            f,
        )

    def forward(self, xyzs, sigmas):
        mesh_occ = self.sketchshape.winding_number(xyzs)
        if self.proximal_surface > 0:
            weight = 1 - self.sketchshape.gaussian_weighted_distance(
                xyzs, self.proximal_surface
            )
        else:
            weight = None
        indicator = (mesh_occ > 0.5).float()
        nerf_occ = 1 - torch.exp(-self.delta * sigmas)
        nerf_occ = nerf_occ.clamp(min=0, max=1.1)
        loss = ce_pq_loss(
            nerf_occ, indicator, weight=weight
        )  # order is important for CE loss + second argument may not be optimized
        return loss


def shifted_expotional_decay(a, b, c, r):
    return a * torch.exp(-b * r) + c


def shifted_cosine_decay(a, b, c, r):
    return a * torch.cos(b * r + c) + a


def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]):
    # get the component of x that is perpendicular to y
    eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6
    return (
        x
        - (
            torch.mul(x, y).sum(dim=[1, 2, 3])
            / torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps)
        ).view(-1, 1, 1, 1)
        * y
    )


def validate_empty_rays(ray_indices, t_start, t_end):
    if ray_indices.nelement() == 0:
        print("Warn Empty rays_indices!")
        ray_indices = torch.LongTensor([0]).to(ray_indices)
        t_start = torch.Tensor([0]).to(ray_indices)
        t_end = torch.Tensor([0]).to(ray_indices)
    return ray_indices, t_start, t_end