Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,332 Bytes
b155b2e e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os, sys
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
import time
import torch
import random
import numpy as np
from PIL import Image
from einops import rearrange
from PIL import Image, ImageSequence
from infer.utils import seed_everything, timing_decorator, auto_amp_inference
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool
from mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline
from mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3d_MVD_Lite_Pipeline
def save_gif(pils, save_path, df=False):
# save a list of PIL.Image to gif
spf = 4000 / len(pils)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
pils[0].save(save_path, format="GIF", save_all=True, append_images=pils[1:], duration=spf, loop=0)
return save_path
class Image2Views():
def __init__(self, device="cuda:0", use_lite=False, save_memory=False):
self.device = device
if use_lite:
self.pipe = Hunyuan3d_MVD_Lite_Pipeline.from_pretrained(
"./weights/mvd_lite",
torch_dtype = torch.float16,
use_safetensors = True,
)
else:
self.pipe = HunYuan3D_MVD_Std_Pipeline.from_pretrained(
"./weights/mvd_std",
torch_dtype = torch.float16,
use_safetensors = True,
)
self.pipe = self.pipe.to(device)
self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1]
self.save_memory = save_memory
set_parameter_grad_false(self.pipe.unet)
print('image2views unet model', get_parameter_number(self.pipe.unet))
@torch.no_grad()
@timing_decorator("image to views")
@auto_amp_inference
def __call__(self, *args, **kwargs):
if self.save_memory:
self.pipe = self.pipe.to(self.device)
torch.cuda.empty_cache()
res = self.call(*args, **kwargs)
self.pipe = self.pipe.to("cpu")
else:
res = self.call(*args, **kwargs)
torch.cuda.empty_cache()
return res
def call(self, pil_img, seed=0, steps=50, guidance_scale=2.0):
seed_everything(seed)
generator = torch.Generator(device=self.device)
res_img = self.pipe(pil_img,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generat=generator).images
show_image = rearrange(np.asarray(res_img[0], dtype=np.uint8), '(n h) (m w) c -> (n m) h w c', n=3, m=2)
pils = [res_img[1]]+[Image.fromarray(show_image[idx]) for idx in self.order]
torch.cuda.empty_cache()
return res_img, pils
if __name__ == "__main__":
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--rgba_path", type=str, required=True)
parser.add_argument("--output_views_path", type=str, required=True)
parser.add_argument("--output_cond_path", type=str, required=True)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--steps", default=50, type=int)
parser.add_argument("--device", default="cuda:0", type=str)
parser.add_argument("--use_lite", default='false', type=str)
return parser.parse_args()
args = get_args()
args.use_lite = str_to_bool(args.use_lite)
rgba_pil = Image.open(args.rgba_path)
assert rgba_pil.mode == "RGBA", "rgba_pil must be RGBA mode"
model = Image2Views(device=args.device, use_lite=args.use_lite)
(views_pil, cond), _ = model(rgba_pil, seed=args.seed, steps=args.steps)
views_pil.save(args.output_views_path)
cond.save(args.output_cond_path)
|