File size: 6,242 Bytes
b155b2e
 
 
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Open Source Model Licensed under the Apache License Version 2.0 
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited 
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved. 
# The below software and/or models in this distribution may have been 
# modified by THL A29 Limited ("Tencent Modifications"). 
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT 
# except for the third-party components listed below. 
# Hunyuan 3D does not impose any additional limitations beyond what is outlined 
# in the repsective licenses of these third-party components. 
# Users must comply with all terms and conditions of original licenses of these third-party 
# components and must ensure that the usage of the third party components adheres to 
# all relevant laws and regulations. 

# For avoidance of doubts, Hunyuan 3D means the large language models and 
# their software and algorithms, including trained model weights, parameters (including 
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, 
# fine-tuning enabling code and other elements of the foregoing made publicly available 
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import os, sys
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")

import time
import torch
import random
import numpy as np
from PIL import Image
from einops import rearrange
from PIL import Image, ImageSequence

from infer.utils import seed_everything, timing_decorator, auto_amp_inference
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool
from svrm.predictor import MV23DPredictor


class Views2Mesh():
    def __init__(self, mv23d_cfg_path, mv23d_ckt_path, 
                 device="cuda:0", use_lite=False, save_memory=False):
        '''
            mv23d_cfg_path: config yaml file 
            mv23d_ckt_path: path to ckpt
            use_lite: lite version
            save_memory: cpu auto
        '''
        self.mv23d_predictor = MV23DPredictor(mv23d_ckt_path, mv23d_cfg_path, device=device)  
        self.mv23d_predictor.model.eval()
        self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1]
        self.device = device
        self.save_memory = save_memory
        set_parameter_grad_false(self.mv23d_predictor.model)
        print('view2mesh model', get_parameter_number(self.mv23d_predictor.model))

    @torch.no_grad()
    @timing_decorator("views to mesh")
    @auto_amp_inference
    def __call__(self, *args, **kwargs):
        if self.save_memory:
            self.mv23d_predictor.model = self.mv23d_predictor.model.to(self.device)
            torch.cuda.empty_cache()
            res = self.call(*args, **kwargs)
            self.mv23d_predictor.model = self.mv23d_predictor.model.to("cpu")
        else:
            res = self.call(*args, **kwargs)
        torch.cuda.empty_cache()
        return res

    def call(
        self,
        views_pil=None, 
        cond_pil=None, 
        gif_pil=None, 
        seed=0, 
        target_face_count = 10000,
        do_texture_mapping = True,
        save_folder='./outputs/test'
    ):
        '''
            can set views_pil, cond_pil simutaously or set gif_pil only
            seed: int
            target_face_count: int 
            save_folder: path to save mesh files
        '''
        save_dir = save_folder
        os.makedirs(save_dir, exist_ok=True)

        if views_pil is not None and cond_pil is not None:
            show_image = rearrange(np.asarray(views_pil, dtype=np.uint8), 
                                   '(n h) (m w) c -> (n m) h w c', n=3, m=2)
            views = [Image.fromarray(show_image[idx]) for idx in self.order] 
            image_list = [cond_pil]+ views
            image_list = [img.convert('RGB') for img in image_list]
        elif gif_pil is not None:
            image_list = [img.convert('RGB') for img in ImageSequence.Iterator(gif_pil)]
        
        image_input = image_list[0]
        image_list = image_list[1:] + image_list[:1]
        
        seed_everything(seed)
        self.mv23d_predictor.predict(
            image_list, 
            save_dir = save_dir, 
            image_input = image_input,
            target_face_count = target_face_count,
            do_texture_mapping = do_texture_mapping
        )
        torch.cuda.empty_cache()
        return save_dir


if __name__ == "__main__":
    
    import argparse
    
    def get_args():
        parser = argparse.ArgumentParser()
        parser.add_argument("--views_path", type=str, required=True)
        parser.add_argument("--cond_path", type=str, required=True)
        parser.add_argument("--save_folder", default="./outputs/test/", type=str)
        parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
        parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
        parser.add_argument("--max_faces_num", default=90000, type=int, 
            help="max num of face, suggest 90000 for effect, 10000 for speed")
        parser.add_argument("--device", default="cuda:0", type=str)
        parser.add_argument("--use_lite", default='false', type=str)
        parser.add_argument("--do_texture_mapping", default='false', type=str)
        
        return parser.parse_args()
        
    args = get_args()
    args.use_lite = str_to_bool(args.use_lite)
    args.do_texture_mapping = str_to_bool(args.do_texture_mapping)

    views = Image.open(args.views_path)
    cond = Image.open(args.cond_path)

    views_to_mesh_model = Views2Mesh(
        args.mv23d_cfg_path, 
        args.mv23d_ckt_path,
        device = args.device, 
        use_lite = args.use_lite
    )

    views_to_mesh_model(
        views,  cond,  0,
        target_face_count = args.max_faces_num,
        save_folder = args.save_folder,
        do_texture_mapping = args.do_texture_mapping
    )