Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import os, sys | |
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") | |
import time | |
import torch | |
import random | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from PIL import Image, ImageSequence | |
from infer.utils import seed_everything, timing_decorator, auto_amp_inference | |
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool | |
from svrm.predictor import MV23DPredictor | |
class Views2Mesh(): | |
def __init__(self, mv23d_cfg_path, mv23d_ckt_path, | |
device="cuda:0", use_lite=False, save_memory=False): | |
''' | |
mv23d_cfg_path: config yaml file | |
mv23d_ckt_path: path to ckpt | |
use_lite: lite version | |
save_memory: cpu auto | |
''' | |
self.mv23d_predictor = MV23DPredictor(mv23d_ckt_path, mv23d_cfg_path, device=device) | |
self.mv23d_predictor.model.eval() | |
self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1] | |
self.device = device | |
self.save_memory = save_memory | |
set_parameter_grad_false(self.mv23d_predictor.model) | |
print('view2mesh model', get_parameter_number(self.mv23d_predictor.model)) | |
def __call__(self, *args, **kwargs): | |
if self.save_memory: | |
self.mv23d_predictor.model = self.mv23d_predictor.model.to(self.device) | |
torch.cuda.empty_cache() | |
res = self.call(*args, **kwargs) | |
self.mv23d_predictor.model = self.mv23d_predictor.model.to("cpu") | |
else: | |
res = self.call(*args, **kwargs) | |
torch.cuda.empty_cache() | |
return res | |
def call( | |
self, | |
views_pil=None, | |
cond_pil=None, | |
gif_pil=None, | |
seed=0, | |
target_face_count = 10000, | |
do_texture_mapping = True, | |
save_folder='./outputs/test' | |
): | |
''' | |
can set views_pil, cond_pil simutaously or set gif_pil only | |
seed: int | |
target_face_count: int | |
save_folder: path to save mesh files | |
''' | |
save_dir = save_folder | |
os.makedirs(save_dir, exist_ok=True) | |
if views_pil is not None and cond_pil is not None: | |
show_image = rearrange(np.asarray(views_pil, dtype=np.uint8), | |
'(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
views = [Image.fromarray(show_image[idx]) for idx in self.order] | |
image_list = [cond_pil]+ views | |
image_list = [img.convert('RGB') for img in image_list] | |
elif gif_pil is not None: | |
image_list = [img.convert('RGB') for img in ImageSequence.Iterator(gif_pil)] | |
image_input = image_list[0] | |
image_list = image_list[1:] + image_list[:1] | |
seed_everything(seed) | |
self.mv23d_predictor.predict( | |
image_list, | |
save_dir = save_dir, | |
image_input = image_input, | |
target_face_count = target_face_count, | |
do_texture_mapping = do_texture_mapping | |
) | |
torch.cuda.empty_cache() | |
return save_dir | |
if __name__ == "__main__": | |
import argparse | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--views_path", type=str, required=True) | |
parser.add_argument("--cond_path", type=str, required=True) | |
parser.add_argument("--save_folder", default="./outputs/test/", type=str) | |
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str) | |
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str) | |
parser.add_argument("--max_faces_num", default=90000, type=int, | |
help="max num of face, suggest 90000 for effect, 10000 for speed") | |
parser.add_argument("--device", default="cuda:0", type=str) | |
parser.add_argument("--use_lite", default='false', type=str) | |
parser.add_argument("--do_texture_mapping", default='false', type=str) | |
return parser.parse_args() | |
args = get_args() | |
args.use_lite = str_to_bool(args.use_lite) | |
args.do_texture_mapping = str_to_bool(args.do_texture_mapping) | |
views = Image.open(args.views_path) | |
cond = Image.open(args.cond_path) | |
views_to_mesh_model = Views2Mesh( | |
args.mv23d_cfg_path, | |
args.mv23d_ckt_path, | |
device = args.device, | |
use_lite = args.use_lite | |
) | |
views_to_mesh_model( | |
views, cond, 0, | |
target_face_count = args.max_faces_num, | |
save_folder = args.save_folder, | |
do_texture_mapping = args.do_texture_mapping | |
) | |