Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import os | |
import math | |
import time | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image, ImageSequence | |
from omegaconf import OmegaConf | |
from torchvision import transforms | |
from safetensors.torch import save_file, load_file | |
from .ldm.util import instantiate_from_config | |
from .ldm.vis_util import render | |
class MV23DPredictor(object): | |
def __init__(self, ckpt_path, cfg_path, elevation=15, number_view=60, | |
render_size=256, device="cuda:0") -> None: | |
self.device = device | |
self.elevation = elevation | |
self.number_view = number_view | |
self.render_size = render_size | |
self.elevation_list = [0, 0, 0, 0, 0, 0, 0] | |
self.azimuth_list = [0, 60, 120, 180, 240, 300, 0] | |
st = time.time() | |
self.model = self.init_model(ckpt_path, cfg_path) | |
print(f"=====> mv23d model init time: {time.time() - st}") | |
self.input_view_transform = transforms.Compose([ | |
transforms.Resize(504, interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
]) | |
self.final_input_view_transform = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
def init_model(self, ckpt_path, cfg_path): | |
config = OmegaConf.load(cfg_path) | |
model = instantiate_from_config(config.model) | |
weights = load_file("./weights/svrm/svrm.safetensors") | |
model.load_state_dict(weights) | |
model.to(self.device) | |
model = model.eval() | |
model.render.half() | |
print(f'Load model successfully') | |
return model | |
def create_camera_to_world_matrix(self, elevation, azimuth, cam_dis=1.5): | |
# elevation azimuth are radians | |
# Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere | |
x = np.cos(elevation) * np.cos(azimuth) | |
y = np.cos(elevation) * np.sin(azimuth) | |
z = np.sin(elevation) | |
# Calculate camera position, target, and up vectors | |
camera_pos = np.array([x, y, z]) * cam_dis | |
target = np.array([0, 0, 0]) | |
up = np.array([0, 0, 1]) | |
# Construct view matrix | |
forward = target - camera_pos | |
forward /= np.linalg.norm(forward) | |
right = np.cross(forward, up) | |
right /= np.linalg.norm(right) | |
new_up = np.cross(right, forward) | |
new_up /= np.linalg.norm(new_up) | |
cam2world = np.eye(4) | |
cam2world[:3, :3] = np.array([right, new_up, -forward]).T | |
cam2world[:3, 3] = camera_pos | |
return cam2world | |
def refine_mask(self, mask, k=16): | |
mask /= 255.0 | |
boder_mask = (mask >= -math.pi / 2.0 / k + 0.5) & (mask <= math.pi / 2.0 / k + 0.5) | |
mask[boder_mask] = 0.5 * np.sin(k * (mask[boder_mask] - 0.5)) + 0.5 | |
mask[mask < -math.pi / 2.0 / k + 0.5] = 0.0 | |
mask[mask > math.pi / 2.0 / k + 0.5] = 1.0 | |
return (mask * 255.0).astype(np.uint8) | |
def load_images_and_cameras(self, input_imgs, elevation_list, azimuth_list): | |
input_image_list = [] | |
input_cam_list = [] | |
for input_view_image, elevation, azimuth in zip(input_imgs, elevation_list, azimuth_list): | |
input_view_image = self.input_view_transform(input_view_image) | |
input_image_list.append(input_view_image) | |
input_view_cam_pos = self.create_camera_to_world_matrix(np.radians(elevation), np.radians(azimuth)) | |
input_view_cam_intrinsic = np.array([35. / 32, 35. /32, 0.5, 0.5]) | |
input_view_cam = torch.from_numpy( | |
np.concatenate([input_view_cam_pos.reshape(-1), input_view_cam_intrinsic], 0) | |
).float() | |
input_cam_list.append(input_view_cam) | |
pixels_input = torch.stack(input_image_list, dim=0) | |
input_images = self.final_input_view_transform(pixels_input) | |
input_cams = torch.stack(input_cam_list, dim=0) | |
return input_images, input_cams | |
def load_data(self, intput_imgs): | |
assert (6+1) == len(intput_imgs) | |
input_images, input_cams = self.load_images_and_cameras(intput_imgs, self.elevation_list, self.azimuth_list) | |
input_cams[-1, :] = 0 # for user input view | |
data = {} | |
data["input_view"] = input_images.unsqueeze(0).to(self.device) # 1 4 3 512 512 | |
data["input_view_cam"] = input_cams.unsqueeze(0).to(self.device) # 1 4 20 | |
return data | |
def predict( | |
self, | |
intput_imgs, | |
save_dir = "outputs/", | |
image_input = None, | |
target_face_count = 10000, | |
do_texture_mapping = True, | |
): | |
os.makedirs(save_dir, exist_ok=True) | |
print(save_dir) | |
with torch.cuda.amp.autocast(): | |
self.model.export_mesh_with_uv( | |
data = self.load_data(intput_imgs), | |
out_dir = save_dir, | |
target_face_count = target_face_count, | |
do_texture_mapping = do_texture_mapping | |
) | |