Huiwenshi commited on
Commit
a7dba96
1 Parent(s): 9cef7d5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +231 -13
README.md CHANGED
@@ -1,13 +1,231 @@
1
- ---
2
- title: Hunyuan3D 1
3
- emoji: 🌖
4
- colorFrom: green
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- ## **Hunyuan3D-1.0** -->
2
+
3
+ <p align="center">
4
+ <img src="./assets/logo.png" height=200>
5
+ </p>
6
+
7
+ # Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation
8
+
9
+ <div align="center">
10
+ <a href="https://github.com/tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
11
+ <a href="https://3d.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Homepage&message=Tencent Hunyuan3D&color=blue&logo=github-pages"></a> &ensp;
12
+ <a href="https://arxiv.org/pdf/2411.02293"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
13
+ <a href="https://huggingface.co/Tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Checkpoints&message=HuggingFace&color=yellow"></a> &ensp;
14
+ <a href="https://huggingface.co/spaces/Tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Demo&message=HuggingFace&color=yellow"></a> &ensp;
15
+ </div>
16
+
17
+
18
+ ## 🔥🔥🔥 News!!
19
+
20
+ * Nov 5, 2024: 💬 We support demo running image_to_3d generation now. Please check the [script](#using-gradio) below.
21
+ * Nov 5, 2024: 💬 We support demo running text_to_3d generation now. Please check the [script](#using-gradio) below.
22
+
23
+
24
+ ## 📑 Open-source Plan
25
+
26
+ - [x] Inference
27
+ - [x] Checkpoints
28
+ - [ ] Baking related
29
+ - [ ] Training
30
+ - [ ] ComfyUI
31
+ - [ ] Distillation Version
32
+ - [ ] TensorRT Version
33
+
34
+
35
+
36
+ ## **Abstract**
37
+ <p align="center">
38
+ <img src="./assets/teaser.png" height=450>
39
+ </p>
40
+
41
+ While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation.
42
+
43
+ In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure.
44
+
45
+ Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.
46
+
47
+
48
+ ## 🎉 **Hunyuan3D-1 Architecture**
49
+
50
+ <p align="center">
51
+ <img src="./assets/overview_3.png" height=400>
52
+ </p>
53
+
54
+
55
+ ## 📈 Comparisons
56
+
57
+ We have evaluated Hunyuan3D-1.0 with other open-source 3d-generation methods, our Hunyuan3D-1.0 received the highest user preference across 5 metrics. Details in the picture on the lower left.
58
+
59
+ The lite model takes around 10 seconds to produce a 3D mesh from a single image on an NVIDIA A100 GPU, while the standard model takes roughly 25 seconds. The plot laid out in the lower right demonstrates that Hunyuan3D-1.0 achieves an optimal balance between quality and efficiency.
60
+
61
+ <p align="center">
62
+ <img src="./assets/radar.png" height=300>
63
+ <img src="./assets/runtime.png" height=300>
64
+ </p>
65
+
66
+ ## Get Started
67
+
68
+ #### Begin by cloning the repository:
69
+
70
+ ```shell
71
+ git clone https://github.com/tencent/Hunyuan3D-1
72
+ cd Hunyuan3D-1
73
+ ```
74
+
75
+ #### Installation Guide for Linux
76
+
77
+ We provide an env_install.sh script file for setting up environment.
78
+
79
+ ```
80
+ # step 1, create conda env
81
+ conda create -n hunyuan3d-1 python=3.9 or 3.10 or 3.11 or 3.12
82
+ conda activate hunyuan3d-1
83
+
84
+ # step 2. install torch realated package
85
+ which pip # check pip corresponds to python
86
+
87
+ # modify the cuda version according to your machine (recommended)
88
+ pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
89
+
90
+ # step 3. install other packages
91
+ bash env_install.sh
92
+ ```
93
+ <details>
94
+ <summary>💡Other tips for envrionment installation</summary>
95
+
96
+ Optionally, you can install xformers or flash_attn to acclerate computation:
97
+
98
+ ```
99
+ pip install xformers --index-url https://download.pytorch.org/whl/cu121
100
+ ```
101
+ ```
102
+ pip install flash_attn
103
+ ```
104
+
105
+ Most environment errors are caused by a mismatch between machine and packages. You can try manually specifying the version, as shown in the following successful cases:
106
+ ```
107
+ # python3.9
108
+ pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
109
+ ```
110
+
111
+ when install pytorch3d, the gcc version is preferably greater than 9, and the gpu driver should not be too old.
112
+
113
+ </details>
114
+
115
+ #### Download Pretrained Models
116
+
117
+ The models are available at [https://huggingface.co/tencent/Hunyuan3D-1](https://huggingface.co/tencent/Hunyuan3D-1):
118
+
119
+ + `Hunyuan3D-1/lite`, lite model for multi-view generation.
120
+ + `Hunyuan3D-1/std`, standard model for multi-view generation.
121
+ + `Hunyuan3D-1/svrm`, sparse-view reconstruction model.
122
+
123
+
124
+ To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
125
+
126
+ ```shell
127
+ python3 -m pip install "huggingface_hub[cli]"
128
+ ```
129
+
130
+ Then download the model using the following commands:
131
+
132
+ ```shell
133
+ mkdir weights
134
+ huggingface-cli download tencent/Hunyuan3D-1 --local-dir ./weights
135
+
136
+ mkdir weights/hunyuanDiT
137
+ huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled --local-dir ./weights/hunyuanDiT
138
+ ```
139
+
140
+ #### Inference
141
+ For text to 3d generation, we supports bilingual Chinese and English, you can use the following command to inference.
142
+ ```python
143
+ python3 main.py \
144
+ --text_prompt "a lovely rabbit" \
145
+ --save_folder ./outputs/test/ \
146
+ --max_faces_num 90000 \
147
+ --do_texture_mapping \
148
+ --do_render
149
+ ```
150
+
151
+ For image to 3d generation, you can use the following command to inference.
152
+ ```python
153
+ python3 main.py \
154
+ --image_prompt "/path/to/your/image" \
155
+ --save_folder ./outputs/test/ \
156
+ --max_faces_num 90000 \
157
+ --do_texture_mapping \
158
+ --do_render
159
+ ```
160
+ We list some more useful configurations for easy usage:
161
+
162
+ | Argument | Default | Description |
163
+ |:------------------:|:---------:|:---------------------------------------------------:|
164
+ |`--text_prompt` | None |The text prompt for 3D generation |
165
+ |`--image_prompt` | None |The image prompt for 3D generation |
166
+ |`--t2i_seed` | 0 |The random seed for generating images |
167
+ |`--t2i_steps` | 25 |The number of steps for sampling of text to image |
168
+ |`--gen_seed` | 0 |The random seed for generating 3d generation |
169
+ |`--gen_steps` | 50 |The number of steps for sampling of 3d generation |
170
+ |`--max_faces_numm` | 90000 |The limit number of faces of 3d mesh |
171
+ |`--save_memory` | False |module will move to cpu automatically|
172
+ |`--do_texture_mapping` | False |Change vertex shadding to texture shading |
173
+ |`--do_render` | False |render gif |
174
+
175
+
176
+ We have also prepared scripts with different configurations for reference
177
+ - Inference Std-pipeline requires 30GB VRAM (24G VRAM with --save_memory).
178
+ - Inference Lite-pipeline requires 22GB VRAM (18G VRAM with --save_memory).
179
+ - Note: --save_memory will increase inference time
180
+
181
+ ```bash
182
+ bash scripts/text_to_3d_std.sh
183
+ bash scripts/text_to_3d_lite.sh
184
+ bash scripts/image_to_3d_std.sh
185
+ bash scripts/image_to_3d_lite.sh
186
+ ```
187
+
188
+ If your gpu memory is 16G, you can try to run modules in pipeline seperately:
189
+ ```bash
190
+ bash scripts/text_to_3d_std_separately.sh 'a lovely rabbit' ./outputs/test # >= 16G
191
+ bash scripts/text_to_3d_lite_separately.sh 'a lovely rabbit' ./outputs/test # >= 14G
192
+ bash scripts/image_to_3d_std_separately.sh ./demos/example_000.png ./outputs/test # >= 16G
193
+ bash scripts/image_to_3d_lite_separately.sh ./demos/example_000.png ./outputs/test # >= 10G
194
+ ```
195
+
196
+ #### Using Gradio
197
+
198
+ We have prepared two versions of multi-view generation, std and lite.
199
+
200
+ ```shell
201
+ # std
202
+ python3 app.py
203
+ python3 app.py --save_memory
204
+
205
+ # lite
206
+ python3 app.py --use_lite
207
+ python3 app.py --use_lite --save_memory
208
+ ```
209
+
210
+ Then the demo can be accessed through http://0.0.0.0:8080. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.
211
+
212
+ ## Camera Parameters
213
+
214
+ Output views are a fixed set of camera poses:
215
+
216
+ + Azimuth (relative to input view): `+0, +60, +120, +180, +240, +300`.
217
+
218
+
219
+ ## Citation
220
+
221
+ If you found this repository helpful, please cite our report:
222
+ ```bibtex
223
+ @misc{yang2024tencent,
224
+ title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
225
+ author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
226
+ year={2024},
227
+ eprint={2411.02293},
228
+ archivePrefix={arXiv},
229
+ primaryClass={cs.CV}
230
+ }
231
+ ```