Huiwenshi commited on
Commit
d7aa774
β€’
1 Parent(s): b155b2e

Delete folder .ipynb_checkpoints/ with huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md DELETED
@@ -1,231 +0,0 @@
1
- <!-- ## **Hunyuan3D-1.0** -->
2
-
3
- <p align="center">
4
- <img src="./assets/logo.png" height=200>
5
- </p>
6
-
7
- # Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation
8
-
9
- <div align="center">
10
- <a href="https://github.com/tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
11
- <a href="https://3d.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Homepage&message=Tencent Hunyuan3D&color=blue&logo=github-pages"></a> &ensp;
12
- <a href="https://arxiv.org/pdf/2411.02293"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
13
- <a href="https://huggingface.co/Tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Checkpoints&message=HuggingFace&color=yellow"></a> &ensp;
14
- <a href="https://huggingface.co/spaces/Tencent/Hunyuan3D-1"><img src="https://img.shields.io/static/v1?label=Demo&message=HuggingFace&color=yellow"></a> &ensp;
15
- </div>
16
-
17
-
18
- ## πŸ”₯πŸ”₯πŸ”₯ News!!
19
-
20
- * Nov 5, 2024: πŸ’¬ We support demo running image_to_3d generation now. Please check the [script](#using-gradio) below.
21
- * Nov 5, 2024: πŸ’¬ We support demo running text_to_3d generation now. Please check the [script](#using-gradio) below.
22
-
23
-
24
- ## πŸ“‘ Open-source Plan
25
-
26
- - [x] Inference
27
- - [x] Checkpoints
28
- - [ ] Baking related
29
- - [ ] Training
30
- - [ ] ComfyUI
31
- - [ ] Distillation Version
32
- - [ ] TensorRT Version
33
-
34
-
35
-
36
- ## **Abstract**
37
- <p align="center">
38
- <img src="./assets/teaser.png" height=450>
39
- </p>
40
-
41
- While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation.
42
-
43
- In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure.
44
-
45
- Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.
46
-
47
-
48
- ## πŸŽ‰ **Hunyuan3D-1 Architecture**
49
-
50
- <p align="center">
51
- <img src="./assets/overview_3.png" height=400>
52
- </p>
53
-
54
-
55
- ## πŸ“ˆ Comparisons
56
-
57
- We have evaluated Hunyuan3D-1.0 with other open-source 3d-generation methods, our Hunyuan3D-1.0 received the highest user preference across 5 metrics. Details in the picture on the lower left.
58
-
59
- The lite model takes around 10 seconds to produce a 3D mesh from a single image on an NVIDIA A100 GPU, while the standard model takes roughly 25 seconds. The plot laid out in the lower right demonstrates that Hunyuan3D-1.0 achieves an optimal balance between quality and efficiency.
60
-
61
- <p align="center">
62
- <img src="./assets/radar.png" height=300>
63
- <img src="./assets/runtime.png" height=300>
64
- </p>
65
-
66
- ## Get Started
67
-
68
- #### Begin by cloning the repository:
69
-
70
- ```shell
71
- git clone https://github.com/tencent/Hunyuan3D-1
72
- cd Hunyuan3D-1
73
- ```
74
-
75
- #### Installation Guide for Linux
76
-
77
- We provide an env_install.sh script file for setting up environment.
78
-
79
- ```
80
- # step 1, create conda env
81
- conda create -n hunyuan3d-1 python=3.9 or 3.10 or 3.11 or 3.12
82
- conda activate hunyuan3d-1
83
-
84
- # step 2. install torch realated package
85
- which pip # check pip corresponds to python
86
-
87
- # modify the cuda version according to your machine (recommended)
88
- pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
89
-
90
- # step 3. install other packages
91
- bash env_install.sh
92
- ```
93
- <details>
94
- <summary>πŸ’‘Other tips for envrionment installation</summary>
95
-
96
- Optionally, you can install xformers or flash_attn to acclerate computation:
97
-
98
- ```
99
- pip install xformers --index-url https://download.pytorch.org/whl/cu121
100
- ```
101
- ```
102
- pip install flash_attn
103
- ```
104
-
105
- Most environment errors are caused by a mismatch between machine and packages. You can try manually specifying the version, as shown in the following successful cases:
106
- ```
107
- # python3.9
108
- pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
109
- ```
110
-
111
- when install pytorch3d, the gcc version is preferably greater than 9, and the gpu driver should not be too old.
112
-
113
- </details>
114
-
115
- #### Download Pretrained Models
116
-
117
- The models are available at [https://huggingface.co/tencent/Hunyuan3D-1](https://huggingface.co/tencent/Hunyuan3D-1):
118
-
119
- + `Hunyuan3D-1/lite`, lite model for multi-view generation.
120
- + `Hunyuan3D-1/std`, standard model for multi-view generation.
121
- + `Hunyuan3D-1/svrm`, sparse-view reconstruction model.
122
-
123
-
124
- To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
125
-
126
- ```shell
127
- python3 -m pip install "huggingface_hub[cli]"
128
- ```
129
-
130
- Then download the model using the following commands:
131
-
132
- ```shell
133
- mkdir weights
134
- huggingface-cli download tencent/Hunyuan3D-1 --local-dir ./weights
135
-
136
- mkdir weights/hunyuanDiT
137
- huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled --local-dir ./weights/hunyuanDiT
138
- ```
139
-
140
- #### Inference
141
- For text to 3d generation, we supports bilingual Chinese and English, you can use the following command to inference.
142
- ```python
143
- python3 main.py \
144
- --text_prompt "a lovely rabbit" \
145
- --save_folder ./outputs/test/ \
146
- --max_faces_num 90000 \
147
- --do_texture_mapping \
148
- --do_render
149
- ```
150
-
151
- For image to 3d generation, you can use the following command to inference.
152
- ```python
153
- python3 main.py \
154
- --image_prompt "/path/to/your/image" \
155
- --save_folder ./outputs/test/ \
156
- --max_faces_num 90000 \
157
- --do_texture_mapping \
158
- --do_render
159
- ```
160
- We list some more useful configurations for easy usage:
161
-
162
- | Argument | Default | Description |
163
- |:------------------:|:---------:|:---------------------------------------------------:|
164
- |`--text_prompt` | None |The text prompt for 3D generation |
165
- |`--image_prompt` | None |The image prompt for 3D generation |
166
- |`--t2i_seed` | 0 |The random seed for generating images |
167
- |`--t2i_steps` | 25 |The number of steps for sampling of text to image |
168
- |`--gen_seed` | 0 |The random seed for generating 3d generation |
169
- |`--gen_steps` | 50 |The number of steps for sampling of 3d generation |
170
- |`--max_faces_numm` | 90000 |The limit number of faces of 3d mesh |
171
- |`--save_memory` | False |module will move to cpu automatically|
172
- |`--do_texture_mapping` | False |Change vertex shadding to texture shading |
173
- |`--do_render` | False |render gif |
174
-
175
-
176
- We have also prepared scripts with different configurations for reference
177
- - Inference Std-pipeline requires 30GB VRAM (24G VRAM with --save_memory).
178
- - Inference Lite-pipeline requires 22GB VRAM (18G VRAM with --save_memory).
179
- - Note: --save_memory will increase inference time
180
-
181
- ```bash
182
- bash scripts/text_to_3d_std.sh
183
- bash scripts/text_to_3d_lite.sh
184
- bash scripts/image_to_3d_std.sh
185
- bash scripts/image_to_3d_lite.sh
186
- ```
187
-
188
- If your gpu memory is 16G, you can try to run modules in pipeline seperately:
189
- ```bash
190
- bash scripts/text_to_3d_std_separately.sh 'a lovely rabbit' ./outputs/test # >= 16G
191
- bash scripts/text_to_3d_lite_separately.sh 'a lovely rabbit' ./outputs/test # >= 14G
192
- bash scripts/image_to_3d_std_separately.sh ./demos/example_000.png ./outputs/test # >= 16G
193
- bash scripts/image_to_3d_lite_separately.sh ./demos/example_000.png ./outputs/test # >= 10G
194
- ```
195
-
196
- #### Using Gradio
197
-
198
- We have prepared two versions of multi-view generation, std and lite.
199
-
200
- ```shell
201
- # std
202
- python3 app.py
203
- python3 app.py --save_memory
204
-
205
- # lite
206
- python3 app.py --use_lite
207
- python3 app.py --use_lite --save_memory
208
- ```
209
-
210
- Then the demo can be accessed through http://0.0.0.0:8080. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.
211
-
212
- ## Camera Parameters
213
-
214
- Output views are a fixed set of camera poses:
215
-
216
- + Azimuth (relative to input view): `+0, +60, +120, +180, +240, +300`.
217
-
218
-
219
- ## Citation
220
-
221
- If you found this repository helpful, please cite our report:
222
- ```bibtex
223
- @misc{yang2024tencent,
224
- title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
225
- author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
226
- year={2024},
227
- eprint={2411.02293},
228
- archivePrefix={arXiv},
229
- primaryClass={cs.CV}
230
- }
231
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/app-checkpoint.py DELETED
@@ -1,343 +0,0 @@
1
- # Open Source Model Licensed under the Apache License Version 2.0
2
- # and Other Licenses of the Third-Party Components therein:
3
- # The below Model in this distribution may have been modified by THL A29 Limited
4
- # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
-
6
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
7
- # The below software and/or models in this distribution may have been
8
- # modified by THL A29 Limited ("Tencent Modifications").
9
- # All Tencent Modifications are Copyright (C) THL A29 Limited.
10
-
11
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
12
- # except for the third-party components listed below.
13
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
14
- # in the repsective licenses of these third-party components.
15
- # Users must comply with all terms and conditions of original licenses of these third-party
16
- # components and must ensure that the usage of the third party components adheres to
17
- # all relevant laws and regulations.
18
-
19
- # For avoidance of doubts, Hunyuan 3D means the large language models and
20
- # their software and algorithms, including trained model weights, parameters (including
21
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
22
- # fine-tuning enabling code and other elements of the foregoing made publicly available
23
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
24
-
25
- import os
26
- import warnings
27
- import argparse
28
- import gradio as gr
29
- from glob import glob
30
- import shutil
31
- import torch
32
- import numpy as np
33
- from PIL import Image
34
- from einops import rearrange
35
-
36
- from infer import seed_everything, save_gif
37
- from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
38
-
39
- warnings.simplefilter('ignore', category=UserWarning)
40
- warnings.simplefilter('ignore', category=FutureWarning)
41
- warnings.simplefilter('ignore', category=DeprecationWarning)
42
-
43
- parser = argparse.ArgumentParser()
44
- parser.add_argument("--use_lite", default=False, action="store_true")
45
- parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
46
- parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
47
- parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
48
- parser.add_argument("--save_memory", default=False, action="store_true")
49
- parser.add_argument("--device", default="cuda:0", type=str)
50
- args = parser.parse_args()
51
-
52
- ################################################################
53
- # initial setting
54
- ################################################################
55
-
56
- CONST_PORT = 8080
57
- CONST_MAX_QUEUE = 1
58
- CONST_SERVER = '0.0.0.0'
59
-
60
- CONST_HEADER = '''
61
- <h2><b>Official πŸ€— Gradio Demo</b></h2><h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D
62
- Generationr</b></a></h2>
63
- Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/placeholder' target='_blank'>ArXiv</a>.
64
-
65
- ❗️❗️❗️**Important Notes:**
66
- - By default, our demo can export a .obj mesh with vertex colors or a .glb mesh.
67
- - If you select "texture mapping," it will export a .obj mesh with a texture map or a .glb mesh.
68
- - If you select "render GIF," it will export a GIF image rendering of the .glb file.
69
- - If the result is unsatisfactory, please try a different seed value (Default: 0).
70
- '''
71
-
72
- CONST_CITATION = r"""
73
- If HunYuan3D-1 is helpful, please help to ⭐ the <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/tencent/Hunyuan3D-1?style=social)](https://github.com/tencent/Hunyuan3D-1)
74
- ---
75
- πŸ“ **Citation**
76
- If you find our work useful for your research or applications, please cite using this bibtex:
77
- ```bibtex
78
- @misc{yang2024tencent,
79
- title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
80
- author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
81
- year={2024},
82
- eprint={2411.02293},
83
- archivePrefix={arXiv},
84
- primaryClass={cs.CV}
85
- }
86
- ```
87
- """
88
-
89
- ################################################################
90
- # prepare text examples and image examples
91
- ################################################################
92
-
93
- def get_example_img_list():
94
- print('Loading example img list ...')
95
- return sorted(glob('./demos/example_*.png'))
96
-
97
- def get_example_txt_list():
98
- print('Loading example txt list ...')
99
- txt_list = list()
100
- for line in open('./demos/example_list.txt'):
101
- txt_list.append(line.strip())
102
- return txt_list
103
-
104
- example_is = get_example_img_list()
105
- example_ts = get_example_txt_list()
106
-
107
- ################################################################
108
- # initial models
109
- ################################################################
110
-
111
- worker_xbg = Removebg()
112
- print(f"loading {args.text2image_path}")
113
- worker_t2i = Text2Image(
114
- pretrain = args.text2image_path,
115
- device = args.device,
116
- save_memory = args.save_memory
117
- )
118
- worker_i2v = Image2Views(
119
- use_lite = args.use_lite,
120
- device = args.device,
121
- save_memory = args.save_memory
122
- )
123
- worker_v23 = Views2Mesh(
124
- args.mv23d_cfg_path,
125
- args.mv23d_ckt_path,
126
- use_lite = args.use_lite,
127
- device = args.device,
128
- save_memory = args.save_memory
129
- )
130
- worker_gif = GifRenderer(args.device)
131
-
132
- def stage_0_t2i(text, image, seed, step):
133
- os.makedirs('./outputs/app_output', exist_ok=True)
134
- exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
135
- if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
136
- else: cur_id = min(set(range(30)) - exists)
137
- if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
138
- shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
139
- save_folder = f'./outputs/app_output/{cur_id}'
140
- os.makedirs(save_folder, exist_ok=True)
141
-
142
- dst = save_folder + '/img.png'
143
-
144
- if not text:
145
- if image is None:
146
- return dst, save_folder
147
- raise gr.Error("Upload image or provide text ...")
148
- image.save(dst)
149
- return dst, save_folder
150
-
151
- image = worker_t2i(text, seed, step)
152
- image.save(dst)
153
- dst = worker_xbg(image, save_folder)
154
- return dst, save_folder
155
-
156
- def stage_1_xbg(image, save_folder):
157
- if isinstance(image, str):
158
- image = Image.open(image)
159
- dst = save_folder + '/img_nobg.png'
160
- rgba = worker_xbg(image)
161
- rgba.save(dst)
162
- return dst
163
-
164
- def stage_2_i2v(image, seed, step, save_folder):
165
- if isinstance(image, str):
166
- image = Image.open(image)
167
- gif_dst = save_folder + '/views.gif'
168
- res_img, pils = worker_i2v(image, seed, step)
169
- save_gif(pils, gif_dst)
170
- views_img, cond_img = res_img[0], res_img[1]
171
- img_array = np.asarray(views_img, dtype=np.uint8)
172
- show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
173
- show_img = show_img[worker_i2v.order, ...]
174
- show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
175
- show_img = Image.fromarray(show_img)
176
- return views_img, cond_img, show_img
177
-
178
- def stage_3_v23(
179
- views_pil,
180
- cond_pil,
181
- seed,
182
- save_folder,
183
- target_face_count = 30000,
184
- do_texture_mapping = True,
185
- do_render =True
186
- ):
187
- do_texture_mapping = do_texture_mapping or do_render
188
- obj_dst = save_folder + '/mesh_with_colors.obj'
189
- glb_dst = save_folder + '/mesh.glb'
190
- worker_v23(
191
- views_pil,
192
- cond_pil,
193
- seed = seed,
194
- save_folder = save_folder,
195
- target_face_count = target_face_count,
196
- do_texture_mapping = do_texture_mapping
197
- )
198
- return obj_dst, glb_dst
199
-
200
- def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
201
- if not do_render_gif: return None
202
- gif_dst = save_folder + '/output.gif'
203
- worker_gif(
204
- save_folder + '/mesh.obj',
205
- gif_dst_path = gif_dst
206
- )
207
- return gif_dst
208
- # ===============================================================
209
- # gradio display
210
- # ===============================================================
211
- with gr.Blocks() as demo:
212
- gr.Markdown(CONST_HEADER)
213
- with gr.Row(variant="panel"):
214
- with gr.Column(scale=2):
215
- with gr.Tab("Text to 3D"):
216
- with gr.Column():
217
- text = gr.TextArea('δΈ€εͺι»‘η™½η›Έι—΄ηš„η†ŠηŒ«εœ¨η™½θ‰²θƒŒζ™―δΈŠε±…δΈ­εη€οΌŒε‘ˆηŽ°ε‡Ίε‘ι€šι£Žζ Όε’Œε―ηˆ±ζ°›ε›΄γ€‚', lines=1, max_lines=10, label='Input text')
218
- with gr.Row():
219
- textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
220
- textgen_step = gr.Number(value=25, label="T2I step", precision=0)
221
- textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
222
- textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
223
- textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
224
-
225
- with gr.Row():
226
- textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
227
- textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
228
- textgen_submit = gr.Button("Generate", variant="primary")
229
-
230
- with gr.Row():
231
- gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10)
232
-
233
- with gr.Tab("Image to 3D"):
234
- with gr.Column():
235
- input_image = gr.Image(label="Input image",
236
- width=256, height=256, type="pil",
237
- image_mode="RGBA", sources="upload",
238
- interactive=True)
239
- with gr.Row():
240
- imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
241
- imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
242
- imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
243
-
244
- with gr.Row():
245
- imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
246
- imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
247
- imggen_submit = gr.Button("Generate", variant="primary")
248
- with gr.Row():
249
- gr.Examples(
250
- examples=example_is,
251
- inputs=[input_image],
252
- label="Img examples",
253
- examples_per_page=10
254
- )
255
-
256
- with gr.Column(scale=3):
257
- with gr.Row():
258
- with gr.Column(scale=2):
259
- rem_bg_image = gr.Image(label="No backgraound image", type="pil",
260
- image_mode="RGBA", interactive=False)
261
- with gr.Column(scale=3):
262
- result_image = gr.Image(label="Multi views", type="pil", interactive=False)
263
-
264
- with gr.Row():
265
- result_3dobj = gr.Model3D(
266
- clear_color=[0.0, 0.0, 0.0, 0.0],
267
- label="Output Obj",
268
- show_label=True,
269
- visible=True,
270
- camera_position=[90, 90, None],
271
- interactive=False
272
- )
273
-
274
- result_3dglb = gr.Model3D(
275
- clear_color=[0.0, 0.0, 0.0, 0.0],
276
- label="Output Glb",
277
- show_label=True,
278
- visible=True,
279
- camera_position=[90, 90, None],
280
- interactive=False
281
- )
282
- result_gif = gr.Image(label="Rendered GIF", interactive=False)
283
-
284
- with gr.Row():
285
- gr.Markdown("""
286
- We recommend downloading and opening Glb with 3D software, such as Blender, MeshLab, etc.
287
-
288
- Limited by gradio, Obj file here only be shown as vertex shading, but Glb can be texture shading.
289
- """)
290
-
291
- #===============================================================
292
- # gradio running code
293
- #===============================================================
294
-
295
- none = gr.State(None)
296
- save_folder = gr.State()
297
- cond_image = gr.State()
298
- views_image = gr.State()
299
- text_image = gr.State()
300
-
301
- textgen_submit.click(
302
- fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step],
303
- outputs=[rem_bg_image, save_folder],
304
- ).success(
305
- fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
306
- outputs=[views_image, cond_image, result_image],
307
- ).success(
308
- fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder,
309
- textgen_max_faces, textgen_do_texture_mapping,
310
- textgen_do_render_gif],
311
- outputs=[result_3dobj, result_3dglb],
312
- ).success(
313
- fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif],
314
- outputs=[result_gif],
315
- ).success(lambda: print('Text_to_3D Done ...'))
316
-
317
- imggen_submit.click(
318
- fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step],
319
- outputs=[text_image, save_folder],
320
- ).success(
321
- fn=stage_1_xbg, inputs=[text_image, save_folder],
322
- outputs=[rem_bg_image],
323
- ).success(
324
- fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
325
- outputs=[views_image, cond_image, result_image],
326
- ).success(
327
- fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder,
328
- imggen_max_faces, imggen_do_texture_mapping,
329
- imggen_do_render_gif],
330
- outputs=[result_3dobj, result_3dglb],
331
- ).success(
332
- fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif],
333
- outputs=[result_gif],
334
- ).success(lambda: print('Image_to_3D Done ...'))
335
-
336
- #===============================================================
337
- # start gradio server
338
- #===============================================================
339
-
340
- gr.Markdown(CONST_CITATION)
341
- demo.queue(max_size=CONST_MAX_QUEUE)
342
- demo.launch(server_name=CONST_SERVER, server_port=CONST_PORT)
343
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/app_hg-checkpoint.py DELETED
@@ -1,384 +0,0 @@
1
- # Open Source Model Licensed under the Apache License Version 2.0
2
- # and Other Licenses of the Third-Party Components therein:
3
- # The below Model in this distribution may have been modified by THL A29 Limited
4
- # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
-
6
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
7
- # The below software and/or models in this distribution may have been
8
- # modified by THL A29 Limited ("Tencent Modifications").
9
- # All Tencent Modifications are Copyright (C) THL A29 Limited.
10
-
11
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
12
- # except for the third-party components listed below.
13
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
14
- # in the repsective licenses of these third-party components.
15
- # Users must comply with all terms and conditions of original licenses of these third-party
16
- # components and must ensure that the usage of the third party components adheres to
17
- # all relevant laws and regulations.
18
-
19
- # For avoidance of doubts, Hunyuan 3D means the large language models and
20
- # their software and algorithms, including trained model weights, parameters (including
21
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
22
- # fine-tuning enabling code and other elements of the foregoing made publicly available
23
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
24
- import spaces
25
- import os
26
- os.environ['CUDA_HOME'] = '/usr/local/cuda-11*'
27
- import warnings
28
- import argparse
29
- import gradio as gr
30
- from glob import glob
31
- import shutil
32
- import torch
33
- import numpy as np
34
- from PIL import Image
35
- from einops import rearrange
36
- from huggingface_hub import snapshot_download
37
-
38
- from infer import seed_everything, save_gif
39
- from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
40
-
41
- warnings.simplefilter('ignore', category=UserWarning)
42
- warnings.simplefilter('ignore', category=FutureWarning)
43
- warnings.simplefilter('ignore', category=DeprecationWarning)
44
-
45
- parser = argparse.ArgumentParser()
46
- parser.add_argument("--use_lite", default=False, action="store_true")
47
- parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
48
- parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
49
- parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
50
- parser.add_argument("--save_memory", default=True) # , action="store_true")
51
- parser.add_argument("--device", default="cuda:0", type=str)
52
- args = parser.parse_args()
53
-
54
- def find_cuda():
55
- # Check if CUDA_HOME or CUDA_PATH environment variables are set
56
- cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
57
-
58
- if cuda_home and os.path.exists(cuda_home):
59
- return cuda_home
60
-
61
- # Search for the nvcc executable in the system's PATH
62
- nvcc_path = shutil.which('nvcc')
63
-
64
- if nvcc_path:
65
- # Remove the 'bin/nvcc' part to get the CUDA installation path
66
- cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
67
- return cuda_path
68
-
69
- return None
70
-
71
- cuda_path = find_cuda()
72
-
73
- if cuda_path:
74
- print(f"CUDA installation found at: {cuda_path}")
75
- else:
76
- print("CUDA installation not found")
77
-
78
-
79
-
80
- def download_models():
81
- # Create weights directory if it doesn't exist
82
- os.makedirs("weights", exist_ok=True)
83
- os.makedirs("weights/hunyuanDiT", exist_ok=True)
84
-
85
- # Download Hunyuan3D-1 model
86
- try:
87
- snapshot_download(
88
- repo_id="tencent/Hunyuan3D-1",
89
- local_dir="./weights",
90
- resume_download=True
91
- )
92
- print("Successfully downloaded Hunyuan3D-1 model")
93
- except Exception as e:
94
- print(f"Error downloading Hunyuan3D-1: {e}")
95
-
96
- # Download HunyuanDiT model
97
- try:
98
- snapshot_download(
99
- repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
100
- local_dir="./weights/hunyuanDiT",
101
- resume_download=True
102
- )
103
- print("Successfully downloaded HunyuanDiT model")
104
- except Exception as e:
105
- print(f"Error downloading HunyuanDiT: {e}")
106
-
107
- # Download models before starting the app
108
- download_models()
109
-
110
- ################################################################
111
-
112
- CONST_PORT = 8080
113
- CONST_MAX_QUEUE = 1
114
- CONST_SERVER = '0.0.0.0'
115
-
116
- CONST_HEADER = '''
117
- <h2><b>Official πŸ€— Gradio Demo</b></h2><h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D
118
- Generationr</b></a></h2>
119
- Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/placeholder' target='_blank'>ArXiv</a>.
120
-
121
- ❗️❗️❗️**Important Notes:**
122
- - By default, our demo can export a .obj mesh with vertex colors or a .glb mesh.
123
- - If you select "texture mapping," it will export a .obj mesh with a texture map or a .glb mesh.
124
- - If you select "render GIF," it will export a GIF image rendering of the .glb file.
125
- - If the result is unsatisfactory, please try a different seed value (Default: 0).
126
- '''
127
-
128
- CONST_CITATION = r"""
129
- If HunYuan3D-1 is helpful, please help to ⭐ the <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/tencent/Hunyuan3D-1?style=social)](https://github.com/tencent/Hunyuan3D-1)
130
- ---
131
- πŸ“ **Citation**
132
- If you find our work useful for your research or applications, please cite using this bibtex:
133
- ```bibtex
134
- @misc{yang2024tencent,
135
- title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
136
- author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
137
- year={2024},
138
- eprint={2411.02293},
139
- archivePrefix={arXiv},
140
- primaryClass={cs.CV}
141
- }
142
- ```
143
- """
144
-
145
- ################################################################
146
-
147
- def get_example_img_list():
148
- print('Loading example img list ...')
149
- return sorted(glob('./demos/example_*.png'))
150
-
151
- def get_example_txt_list():
152
- print('Loading example txt list ...')
153
- txt_list = list()
154
- for line in open('./demos/example_list.txt'):
155
- txt_list.append(line.strip())
156
- return txt_list
157
-
158
- example_is = get_example_img_list()
159
- example_ts = get_example_txt_list()
160
- ################################################################
161
-
162
- worker_xbg = Removebg()
163
- print(f"loading {args.text2image_path}")
164
- worker_t2i = Text2Image(
165
- pretrain = args.text2image_path,
166
- device = args.device,
167
- save_memory = args.save_memory
168
- )
169
- worker_i2v = Image2Views(
170
- use_lite = args.use_lite,
171
- device = args.device,
172
- save_memory = args.save_memory
173
- )
174
- worker_v23 = Views2Mesh(
175
- args.mv23d_cfg_path,
176
- args.mv23d_ckt_path,
177
- use_lite = args.use_lite,
178
- device = args.device,
179
- save_memory = args.save_memory
180
- )
181
- worker_gif = GifRenderer(args.device)
182
-
183
- @spaces.GPU
184
- def stage_0_t2i(text, image, seed, step):
185
- os.makedirs('./outputs/app_output', exist_ok=True)
186
- exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
187
- if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
188
- else: cur_id = min(set(range(30)) - exists)
189
- if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
190
- shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
191
- save_folder = f'./outputs/app_output/{cur_id}'
192
- os.makedirs(save_folder, exist_ok=True)
193
-
194
- dst = os.path.join(save_folder, 'img.png')
195
-
196
- if not text:
197
- if image is None:
198
- return dst, save_folder
199
- raise gr.Error("Upload image or provide text ...")
200
- image.save(dst)
201
- return dst, save_folder
202
-
203
- image = worker_t2i(text, seed, step)
204
- image.save(dst)
205
- dst = worker_xbg(image, save_folder)
206
- return dst, save_folder
207
-
208
- @spaces.GPU
209
- def stage_1_xbg(image, save_folder):
210
- if isinstance(image, str):
211
- image = Image.open(image)
212
- dst = save_folder + '/img_nobg.png'
213
- rgba = worker_xbg(image)
214
- rgba.save(dst)
215
- return dst
216
-
217
- @spaces.GPU
218
- def stage_2_i2v(image, seed, step, save_folder):
219
- if isinstance(image, str):
220
- image = Image.open(image)
221
- gif_dst = save_folder + '/views.gif'
222
- res_img, pils = worker_i2v(image, seed, step)
223
- save_gif(pils, gif_dst)
224
- views_img, cond_img = res_img[0], res_img[1]
225
- img_array = np.asarray(views_img, dtype=np.uint8)
226
- show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
227
- show_img = show_img[worker_i2v.order, ...]
228
- show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
229
- show_img = Image.fromarray(show_img)
230
- return views_img, cond_img, show_img
231
-
232
- @spaces.GPU
233
- def stage_3_v23(
234
- views_pil,
235
- cond_pil,
236
- seed,
237
- save_folder,
238
- target_face_count = 30000,
239
- do_texture_mapping = True,
240
- do_render =True
241
- ):
242
- do_texture_mapping = do_texture_mapping or do_render
243
- obj_dst = save_folder + '/mesh_with_colors.obj'
244
- glb_dst = save_folder + '/mesh.glb'
245
- worker_v23(
246
- views_pil,
247
- cond_pil,
248
- seed = seed,
249
- save_folder = save_folder,
250
- target_face_count = target_face_count,
251
- do_texture_mapping = do_texture_mapping
252
- )
253
- return obj_dst, glb_dst
254
-
255
- @spaces.GPU
256
- def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
257
- if not do_render_gif: return None
258
- gif_dst = save_folder + '/output.gif'
259
- worker_gif(
260
- save_folder + '/mesh.obj',
261
- gif_dst_path = gif_dst
262
- )
263
- return gif_dst
264
-
265
- #===============================================================
266
- with gr.Blocks() as demo:
267
- gr.Markdown(CONST_HEADER)
268
- with gr.Row(variant="panel"):
269
- with gr.Column(scale=2):
270
- with gr.Tab("Text to 3D"):
271
- with gr.Column():
272
- text = gr.TextArea('δΈ€εͺι»‘η™½η›Έι—΄ηš„η†ŠηŒ«εœ¨η™½θ‰²θƒŒζ™―δΈŠε±…δΈ­εη€οΌŒε‘ˆηŽ°ε‡Ίε‘ι€šι£Žζ Όε’Œε―ηˆ±ζ°›ε›΄γ€‚', lines=1, max_lines=10, label='Input text')
273
- with gr.Row():
274
- textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
275
- textgen_step = gr.Number(value=25, label="T2I step", precision=0)
276
- textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
277
- textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
278
- textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
279
-
280
- with gr.Row():
281
- textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
282
- textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
283
- textgen_submit = gr.Button("Generate", variant="primary")
284
-
285
- with gr.Row():
286
- gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10)
287
-
288
- with gr.Tab("Image to 3D"):
289
- with gr.Column():
290
- input_image = gr.Image(label="Input image",
291
- width=256, height=256, type="pil",
292
- image_mode="RGBA", sources="upload",
293
- interactive=True)
294
- with gr.Row():
295
- imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
296
- imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
297
- imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
298
-
299
- with gr.Row():
300
- imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
301
- imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
302
- imggen_submit = gr.Button("Generate", variant="primary")
303
- with gr.Row():
304
- gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10)
305
-
306
- with gr.Column(scale=3):
307
- with gr.Row():
308
- with gr.Column(scale=2):
309
- rem_bg_image = gr.Image(label="No backgraound image", type="pil",
310
- image_mode="RGBA", interactive=False)
311
- with gr.Column(scale=3):
312
- result_image = gr.Image(label="Multi views", type="pil", interactive=False)
313
-
314
- with gr.Row():
315
- result_3dobj = gr.Model3D(
316
- clear_color=[0.0, 0.0, 0.0, 0.0],
317
- label="Output Obj",
318
- show_label=True,
319
- visible=True,
320
- camera_position=[90, 90, None],
321
- interactive=False
322
- )
323
-
324
- result_3dglb = gr.Model3D(
325
- clear_color=[0.0, 0.0, 0.0, 0.0],
326
- label="Output Glb",
327
- show_label=True,
328
- visible=True,
329
- camera_position=[90, 90, None],
330
- interactive=False
331
- )
332
- result_gif = gr.Image(label="Rendered GIF", interactive=False)
333
-
334
- with gr.Row():
335
- gr.Markdown("""
336
- We recommend download and open Glb using 3D software, such as Blender, MeshLab, etc.
337
- Limited by gradio, Obj file here only be shown as vertex shading, but Glb can be texture shading.
338
- """)
339
-
340
- #===============================================================
341
-
342
- none = gr.State(None)
343
- save_folder = gr.State()
344
- cond_image = gr.State()
345
- views_image = gr.State()
346
- text_image = gr.State()
347
-
348
- textgen_submit.click(
349
- fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step],
350
- outputs=[rem_bg_image, save_folder],
351
- ).success(
352
- fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
353
- outputs=[views_image, cond_image, result_image],
354
- ).success(
355
- fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif],
356
- outputs=[result_3dobj, result_3dglb],
357
- ).success(
358
- fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif],
359
- outputs=[result_gif],
360
- ).success(lambda: print('Text_to_3D Done ...'))
361
-
362
- imggen_submit.click(
363
- fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step],
364
- outputs=[text_image, save_folder],
365
- ).success(
366
- fn=stage_1_xbg, inputs=[text_image, save_folder],
367
- outputs=[rem_bg_image],
368
- ).success(
369
- fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
370
- outputs=[views_image, cond_image, result_image],
371
- ).success(
372
- fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif],
373
- outputs=[result_3dobj, result_3dglb],
374
- ).success(
375
- fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif],
376
- outputs=[result_gif],
377
- ).success(lambda: print('Image_to_3D Done ...'))
378
-
379
- #===============================================================
380
-
381
- gr.Markdown(CONST_CITATION)
382
- demo.queue(max_size=CONST_MAX_QUEUE)
383
- demo.launch()
384
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/main-checkpoint.py DELETED
@@ -1,164 +0,0 @@
1
- # Open Source Model Licensed under the Apache License Version 2.0
2
- # and Other Licenses of the Third-Party Components therein:
3
- # The below Model in this distribution may have been modified by THL A29 Limited
4
- # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
-
6
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
7
- # The below software and/or models in this distribution may have been
8
- # modified by THL A29 Limited ("Tencent Modifications").
9
- # All Tencent Modifications are Copyright (C) THL A29 Limited.
10
-
11
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
12
- # except for the third-party components listed below.
13
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
14
- # in the repsective licenses of these third-party components.
15
- # Users must comply with all terms and conditions of original licenses of these third-party
16
- # components and must ensure that the usage of the third party components adheres to
17
- # all relevant laws and regulations.
18
-
19
- # For avoidance of doubts, Hunyuan 3D means the large language models and
20
- # their software and algorithms, including trained model weights, parameters (including
21
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
22
- # fine-tuning enabling code and other elements of the foregoing made publicly available
23
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.l
24
-
25
- import os
26
- import warnings
27
- import torch
28
- from PIL import Image
29
- import argparse
30
-
31
- from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
32
-
33
- warnings.simplefilter('ignore', category=UserWarning)
34
- warnings.simplefilter('ignore', category=FutureWarning)
35
- warnings.simplefilter('ignore', category=DeprecationWarning)
36
-
37
- def get_args():
38
- parser = argparse.ArgumentParser()
39
- parser.add_argument(
40
- "--use_lite", default=False, action="store_true"
41
- )
42
- parser.add_argument(
43
- "--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str
44
- )
45
- parser.add_argument(
46
- "--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str
47
- )
48
- parser.add_argument(
49
- "--text2image_path", default="weights/hunyuanDiT", type=str
50
- )
51
- parser.add_argument(
52
- "--save_folder", default="./outputs/test/", type=str
53
- )
54
- parser.add_argument(
55
- "--text_prompt", default="", type=str,
56
- )
57
- parser.add_argument(
58
- "--image_prompt", default="", type=str
59
- )
60
- parser.add_argument(
61
- "--device", default="cuda:0", type=str
62
- )
63
- parser.add_argument(
64
- "--t2i_seed", default=0, type=int
65
- )
66
- parser.add_argument(
67
- "--t2i_steps", default=25, type=int
68
- )
69
- parser.add_argument(
70
- "--gen_seed", default=0, type=int
71
- )
72
- parser.add_argument(
73
- "--gen_steps", default=50, type=int
74
- )
75
- parser.add_argument(
76
- "--max_faces_num", default=80000, type=int,
77
- help="max num of face, suggest 80000 for effect, 10000 for speed"
78
- )
79
- parser.add_argument(
80
- "--save_memory", default=False, action="store_true"
81
- )
82
- parser.add_argument(
83
- "--do_texture_mapping", default=False, action="store_true"
84
- )
85
- parser.add_argument(
86
- "--do_render", default=False, action="store_true"
87
- )
88
- return parser.parse_args()
89
-
90
-
91
- if __name__ == "__main__":
92
- args = get_args()
93
-
94
- assert not (args.text_prompt and args.image_prompt), "Text and image can only be given to one"
95
- assert args.text_prompt or args.image_prompt, "Text and image can only be given to one"
96
-
97
- # init model
98
- rembg_model = Removebg()
99
- image_to_views_model = Image2Views(
100
- device=args.device,
101
- use_lite=args.use_lite,
102
- save_memory=args.save_memory
103
- )
104
-
105
- views_to_mesh_model = Views2Mesh(
106
- args.mv23d_cfg_path,
107
- args.mv23d_ckt_path,
108
- args.device,
109
- use_lite=args.use_lite,
110
- save_memory=args.save_memory
111
- )
112
-
113
- if args.text_prompt:
114
- text_to_image_model = Text2Image(
115
- pretrain = args.text2image_path,
116
- device = args.device,
117
- save_memory = args.save_memory
118
- )
119
- if args.do_render:
120
- gif_renderer = GifRenderer(device=args.device)
121
-
122
- # ---- ----- ---- ---- ---- ----
123
-
124
- os.makedirs(args.save_folder, exist_ok=True)
125
-
126
- # stage 1, text to image
127
- if args.text_prompt:
128
- res_rgb_pil = text_to_image_model(
129
- args.text_prompt,
130
- seed=args.t2i_seed,
131
- steps=args.t2i_steps
132
- )
133
- res_rgb_pil.save(os.path.join(args.save_folder, "img.jpg"))
134
- elif args.image_prompt:
135
- res_rgb_pil = Image.open(args.image_prompt)
136
-
137
- # stage 2, remove back ground
138
- res_rgba_pil = rembg_model(res_rgb_pil)
139
- res_rgb_pil.save(os.path.join(args.save_folder, "img_nobg.png"))
140
-
141
- # stage 3, image to views
142
- (views_grid_pil, cond_img), view_pil_list = image_to_views_model(
143
- res_rgba_pil,
144
- seed = args.gen_seed,
145
- steps = args.gen_steps
146
- )
147
- views_grid_pil.save(os.path.join(args.save_folder, "views.jpg"))
148
-
149
- # stage 4, views to mesh
150
- views_to_mesh_model(
151
- views_grid_pil,
152
- cond_img,
153
- seed = args.gen_seed,
154
- target_face_count = args.max_faces_num,
155
- save_folder = args.save_folder,
156
- do_texture_mapping = args.do_texture_mapping
157
- )
158
-
159
- # stage 5, render gif
160
- if args.do_render:
161
- gif_renderer(
162
- os.path.join(args.save_folder, 'mesh.obj'),
163
- gif_dst_path = os.path.join(args.save_folder, 'output.gif'),
164
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/requirements-checkpoint.txt DELETED
@@ -1,24 +0,0 @@
1
- --find-links https://download.pytorch.org/whl/cu118
2
- torch==2.2.0
3
- torchvision==0.17.0
4
- diffusers
5
- numpy==1.26.4
6
- transformers
7
- rembg
8
- tqdm
9
- omegaconf
10
- matplotlib
11
- opencv-python
12
- imageio
13
- jaxtyping
14
- einops
15
- SentencePiece
16
- accelerate
17
- trimesh
18
- PyMCubes
19
- xatlas
20
- libigl
21
- git+https://github.com/facebookresearch/pytorch3d@stable
22
- git+https://github.com/NVlabs/nvdiffrast
23
- open3d
24
- ninja