# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import spaces import os os.environ['CUDA_HOME'] = '/usr/local/cuda-11*' import warnings import argparse import gradio as gr from glob import glob import shutil import torch import numpy as np from PIL import Image from einops import rearrange from huggingface_hub import snapshot_download from infer import seed_everything, save_gif from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer warnings.simplefilter('ignore', category=UserWarning) warnings.simplefilter('ignore', category=FutureWarning) warnings.simplefilter('ignore', category=DeprecationWarning) parser = argparse.ArgumentParser() parser.add_argument("--use_lite", default=False, action="store_true") parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str) parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str) parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str) parser.add_argument("--save_memory", default=False) # , action="store_true") parser.add_argument("--device", default="cuda:0", type=str) args = parser.parse_args() @spaces.GPU def find_cuda(): # Check if CUDA_HOME or CUDA_PATH environment variables are set cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # Search for the nvcc executable in the system's PATH nvcc_path = shutil.which('nvcc') if nvcc_path: # Remove the 'bin/nvcc' part to get the CUDA installation path cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") def download_models(): # Create weights directory if it doesn't exist os.makedirs("weights", exist_ok=True) os.makedirs("weights/hunyuanDiT", exist_ok=True) # Download Hunyuan3D-1 model try: snapshot_download( repo_id="tencent/Hunyuan3D-1", local_dir="./weights", resume_download=True ) print("Successfully downloaded Hunyuan3D-1 model") except Exception as e: print(f"Error downloading Hunyuan3D-1: {e}") # Download HunyuanDiT model try: snapshot_download( repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled", local_dir="./weights/hunyuanDiT", resume_download=True ) print("Successfully downloaded HunyuanDiT model") except Exception as e: print(f"Error downloading HunyuanDiT: {e}") # Download models before starting the app download_models() ################################################################ CONST_PORT = 8080 CONST_MAX_QUEUE = 1 CONST_SERVER = '0.0.0.0' CONST_HEADER = '''

Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation

⭐️Technical report: ArXiv. ⭐️Code: GitHub. ❗️❗️❗️**Important Notes** Our demo allows you to export models in various formats: - By default, export as a *.obj mesh with vertex colors or a *.glb mesh. - Select "texture mapping" to export a *.obj mesh with a texture map or a *.glb mesh. - Select "render GIF" to export a GIF rendering of the *.glb file. If the results aren't satisfactory, try using a different seed value (default is 0). ''' ################################################################ def get_example_img_list(): print('Loading example img list ...') return sorted(glob('./demos/example_*.png')) def get_example_txt_list(): print('Loading example txt list ...') txt_list = list() for line in open('./demos/example_list.txt'): txt_list.append(line.strip()) return txt_list example_is = get_example_img_list() example_ts = get_example_txt_list() ################################################################ worker_xbg = Removebg() print(f"loading {args.text2image_path}") worker_t2i = Text2Image( pretrain = args.text2image_path, device = args.device, save_memory = args.save_memory ) worker_i2v = Image2Views( use_lite = args.use_lite, device = args.device, save_memory = args.save_memory ) worker_v23 = Views2Mesh( args.mv23d_cfg_path, args.mv23d_ckt_path, use_lite = args.use_lite, device = args.device, save_memory = args.save_memory ) worker_gif = GifRenderer(args.device) @spaces.GPU def stage_0_t2i(text, image, seed, step): os.makedirs('./outputs/app_output', exist_ok=True) exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith(".")) if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0 else: cur_id = min(set(range(30)) - exists) if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"): shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}") save_folder = f'./outputs/app_output/{cur_id}' os.makedirs(save_folder, exist_ok=True) dst = os.path.join(save_folder, 'img.png') if not text: if image is None: return dst, save_folder raise gr.Error("Upload image or provide text ...") image.save(dst) return dst, save_folder image = worker_t2i(text, seed, step) image.save(dst) dst = worker_xbg(image, save_folder) return dst, save_folder @spaces.GPU def stage_1_xbg(image, save_folder): if isinstance(image, str): image = Image.open(image) dst = save_folder + '/img_nobg.png' rgba = worker_xbg(image) rgba.save(dst) return dst @spaces.GPU def stage_2_i2v(image, seed, step, save_folder): if isinstance(image, str): image = Image.open(image) gif_dst = save_folder + '/views.gif' res_img, pils = worker_i2v(image, seed, step) save_gif(pils, gif_dst) views_img, cond_img = res_img[0], res_img[1] img_array = np.asarray(views_img, dtype=np.uint8) show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2) show_img = show_img[worker_i2v.order, ...] show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3) show_img = Image.fromarray(show_img) return views_img, cond_img, show_img @spaces.GPU def stage_3_v23( views_pil, cond_pil, seed, save_folder, target_face_count = 30000, do_texture_mapping = True, do_render =True ): do_texture_mapping = do_texture_mapping or do_render obj_dst = save_folder + '/mesh_with_colors.obj' glb_dst = save_folder + '/mesh.glb' worker_v23( views_pil, cond_pil, seed = seed, save_folder = save_folder, target_face_count = target_face_count, do_texture_mapping = do_texture_mapping ) return obj_dst, glb_dst @spaces.GPU def stage_4_gif(obj_dst, save_folder, do_render_gif=True): if not do_render_gif: return None gif_dst = save_folder + '/output.gif' worker_gif( save_folder + '/mesh.obj', gif_dst_path = gif_dst ) return gif_dst #=============================================================== with gr.Blocks() as demo: gr.Markdown(CONST_HEADER) with gr.Row(variant="panel"): with gr.Column(scale=2): with gr.Tab("Text to 3D"): with gr.Column(): text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。', lines=1, max_lines=10, label='Input text') with gr.Row(): textgen_seed = gr.Number(value=0, label="T2I seed", precision=0) textgen_step = gr.Number(value=25, label="T2I steps", precision=0, minimum=10, maximum=50) textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0) textgen_STEP = gr.Number(value=50, label="Gen steps", precision=0, minimum=40, maximum=100) textgen_max_faces = gr.Number(value=90000, label="Face number", precision=0, minimum=5000, maximum=1000000) with gr.Row(): # textgen_do_texture_mapping = gr.Checkbox(label="Texture mapping", value=False, interactive=True) # textgen_do_render_gif = gr.Checkbox(label="Render GIF", value=False, interactive=True) textgen_submit = gr.Button("Generate", variant="primary") with gr.Row(): gr.Examples(examples=example_ts, inputs=[text], label="Text examples", examples_per_page=10) with gr.Tab("Image to 3D"): with gr.Column(): input_image = gr.Image(label="Input image", width=256, height=256, type="pil", image_mode="RGBA", sources="upload", interactive=True) with gr.Row(): imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0) imggen_STEP = gr.Number(value=50, label="Gen steps", precision=0, minimum=40, maximum=100) imggen_max_faces = gr.Number(value=90000, label="Face number", precision=0, minimum=5000, maximum=1000000) with gr.Row(): # imggen_do_texture_mapping = gr.Checkbox(label="Texture mapping", value=False, interactive=True) # imggen_do_render_gif = gr.Checkbox(label="Render GIF", value=False, interactive=True) imggen_submit = gr.Button("Generate", variant="primary") with gr.Row(): gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10) with gr.Column(scale=3): with gr.Row(): with gr.Column(scale=2): rem_bg_image = gr.Image(label="Image without background", type="pil", image_mode="RGBA", interactive=False) with gr.Column(scale=3): result_image = gr.Image(label="Multi-view images", type="pil", interactive=False) with gr.Row(): result_3dobj = gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="OBJ", show_label=True, visible=True, camera_position=[90, 90, None], interactive=False ) result_3dglb = gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="GLB", show_label=True, visible=True, camera_position=[90, 90, None], interactive=False ) # result_gif = gr.Image(label="Rendered GIF", interactive=False) with gr.Row(): gr.Markdown("""Due to Gradio limitations, OBJ files are displayed with vertex shading only, while GLB files can be viewed with texture shading. For the best experience, we recommend downloading the GLB files and opening them with 3D software like Blender or MeshLab.""") #=============================================================== textgen_do_texture_mapping = gr.State(False) textgen_do_render_gif = gr.State(False) imggen_do_texture_mapping = gr.State(False) imggen_do_render_gif = gr.State(False) none = gr.State(None) save_folder = gr.State() cond_image = gr.State() views_image = gr.State() text_image = gr.State() textgen_submit.click( fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step], outputs=[rem_bg_image, save_folder], ).success( fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder], outputs=[views_image, cond_image, result_image], ).success( fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif], outputs=[result_3dobj, result_3dglb], ).success(lambda: print('Text_to_3D Done ...')) # .success( # fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif], # outputs=[result_gif], # ).success(lambda: print('Text_to_3D Done ...')) imggen_submit.click( fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step], outputs=[text_image, save_folder], ).success( fn=stage_1_xbg, inputs=[text_image, save_folder], outputs=[rem_bg_image], ).success( fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder], outputs=[views_image, cond_image, result_image], ).success( fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif], outputs=[result_3dobj, result_3dglb], ).success(lambda: print('Image_to_3D Done ...')) # success( # fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif], # outputs=[result_gif], # ).success(lambda: print('Image_to_3D Done ...')) #=============================================================== demo.queue() demo.launch()