Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,499 Bytes
3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 79aad46 04b20ec 79aad46 04b20ec c9e7a2a 04b20ec c9e7a2a 04b20ec 3c9cde1 04b20ec c9e7a2a 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec ec3790b 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 3c9cde1 04b20ec 84f43b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
import random
import shutil
import time
from glob import glob
from pathlib import Path
import gradio as gr
import torch
import trimesh
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uuid
from hy3dgen.shapegen.utils import logger
MAX_SEED = 1e7
if True:
import os
import spaces
import subprocess
import sys
import shlex
print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
print('install custom')
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
def get_example_txt_list():
print('Loading example txt list ...')
txt_list = list()
for line in open('./assets/example_prompts.txt', encoding='utf-8'):
txt_list.append(line.strip())
return txt_list
def get_example_mv_list():
print('Loading example mv list ...')
mv_list = list()
root = './assets/example_mv_images'
for mv_dir in os.listdir(root):
view_list = []
for view in ['front', 'back', 'left', 'right']:
path = os.path.join(root, mv_dir, f'{view}.png')
if os.path.exists(path):
view_list.append(path)
else:
view_list.append(None)
mv_list.append(view_list)
return mv_list
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
def export_mesh(mesh, save_folder, textured=False, type='glb'):
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>'
print(
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
<div style='height: {height}; width: 100%;'>
{iframe_tag}
</div>
"""
@spaces.GPU(duration=150)
def _gen_shape(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
if not MV_MODE and image is None and caption is None:
raise gr.Error("Please provide either a caption or an image.")
if MV_MODE:
if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None:
raise gr.Error("Please provide at least one view image.")
image = {}
if mv_image_front:
image['front'] = mv_image_front
if mv_image_back:
image['back'] = mv_image_back
if mv_image_left:
image['left'] = mv_image_left
if mv_image_right:
image['right'] = mv_image_right
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
if caption: print('prompt is', caption)
save_folder = gen_save_folder()
stats = {
'model': {
'shapegen': f'{args.model_path}/{args.subfolder}',
'texgen': f'{args.texgen_model_path}',
},
'params': {
'caption': caption,
'steps': steps,
'guidance_scale': guidance_scale,
'seed': seed,
'octree_resolution': octree_resolution,
'check_box_rembg': check_box_rembg,
'num_chunks': num_chunks,
}
}
time_meta = {}
if image is None:
start_time = time.time()
try:
image = t2i_worker(caption)
except Exception as e:
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.")
time_meta['text2image'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'input.png'))
if MV_MODE:
start_time = time.time()
for k, v in image.items():
if check_box_rembg or v.mode == "RGB":
img = rmbg_worker(v.convert('RGB'))
image[k] = img
time_meta['remove background'] = time.time() - start_time
else:
if check_box_rembg or image.mode == "RGB":
start_time = time.time()
image = rmbg_worker(image.convert('RGB'))
time_meta['remove background'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'rembg.png'))
# image to white model
start_time = time.time()
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh'
)
time_meta['shape generation'] = time.time() - start_time
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time))
tmp_start = time.time()
mesh = export_to_trimesh(outputs)[0]
time_meta['export to trimesh'] = time.time() - tmp_start
stats['number_of_faces'] = mesh.faces.shape[0]
stats['number_of_vertices'] = mesh.vertices.shape[0]
stats['time'] = time_meta
main_image = image if not MV_MODE else image['front']
return mesh, main_image, save_folder, stats, seed
@spaces.GPU(duration=150)
def generation_all(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
caption,
image,
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
path = export_mesh(mesh, save_folder, textured=False)
# tmp_time = time.time()
# mesh = floater_remove_worker(mesh)
# mesh = degenerate_face_remove_worker(mesh)
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time))
# stats['time']['postprocessing'] = time.time() - tmp_time
tmp_time = time.time()
mesh = face_reduce_worker(mesh)
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['face reduction'] = time.time() - tmp_time
tmp_time = time.time()
textured_mesh = texgen_worker(mesh, image)
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['texture generation'] = time.time() - tmp_time
stats['time']['total'] = time.time() - start_time_0
textured_mesh.metadata['extras'] = stats
path_textured = export_mesh(textured_mesh, save_folder, textured=True)
model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
gr.update(value=path_textured),
model_viewer_html_textured,
stats,
seed,
)
@spaces.GPU(duration=150)
def shape_generation(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
caption,
image,
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
stats['time']['total'] = time.time() - start_time_0
mesh.metadata['extras'] = stats
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
model_viewer_html,
stats,
seed,
)
def build_app():
title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation'
if MV_MODE:
title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views'
if 'mini' in args.subfolder:
title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator'
if TURBO_MODE:
title = title.replace(':', '-Turbo: Fast ')
title_html = f"""
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px">
{title}
</div>
<div align="center">
Tencent Hunyuan3D Team
</div>
<div align="center">
<a href="https://github.com/tencent/Hunyuan3D-2">Github</a>  
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>  
<a href="https://3d.hunyuan.tencent.com">Hunyuan3D Studio</a>  
<a href="#">Technical Report</a>  
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Pretrained Models</a>  
</div>
"""
custom_css = """
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) {
max-width: 1480px;
}
.mv-image button .wrap {
font-size: 10px;
}
.mv-image .icon-wrap {
width: 20px;
}
"""
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs(selected='tab_img_prompt') as tabs_prompt:
with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip:
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290)
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp:
caption = gr.Textbox(label='Text Prompt',
placeholder='HunyuanDiT will be used to generate image.',
info='Example: A 3D model of a cute cat, white background')
with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv:
# gr.Label('Please upload at least one front image.')
with gr.Row():
mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
btn = gr.Button(value='Gen Shape', variant='primary', min_width=100)
btn_all = gr.Button(value='Gen Textured Shape',
variant='primary',
visible=HAS_TEXTUREGEN,
min_width=100)
with gr.Group():
file_out = gr.File(label="File", visible=False)
file_out2 = gr.File(label="File", visible=False)
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'):
with gr.Tab("Options", id='tab_options', visible=TURBO_MODE):
gen_mode = gr.Radio(label='Generation Mode',
info='Recommendation: Turbo for most cases, Fast for very complex cases, Standard seldom use.',
choices=['Turbo', 'Fast', 'Standard'], value='Turbo')
decode_mode = gr.Radio(label='Decoding Mode',
info='The resolution for exporting mesh from generated vectset',
choices=['Low', 'Standard', 'High'],
value='Standard')
with gr.Tab('Advanced Options', id='tab_advanced_options'):
with gr.Row():
check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
with gr.Row():
num_steps = gr.Slider(maximum=100,
minimum=1,
value=5 if 'turbo' in args.subfolder else 30,
step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Row():
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100)
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000,
label='Number of Chunks', min_width=100)
with gr.Tab("Export", id='tab_export'):
with gr.Row():
file_type = gr.Dropdown(label='File Type', choices=SUPPORTED_FORMATS,
value='glb', min_width=100)
reduce_face = gr.Checkbox(label='Simplify Mesh', value=False, min_width=100)
export_texture = gr.Checkbox(label='Include Texture', value=False,
visible=False, min_width=100)
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000,
label='Target Face Number')
with gr.Row():
confirm_export = gr.Button(value="Transform", min_width=100)
file_export = gr.DownloadButton(label="Download", variant='primary',
interactive=False, min_width=100)
with gr.Column(scale=6):
with gr.Tabs(selected='gen_mesh_panel') as tabs_output:
with gr.Tab('Generated Mesh', id='gen_mesh_panel'):
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Exporting Mesh', id='export_mesh_panel'):
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Mesh Statistic', id='stats_panel'):
stats = gr.Json({}, label='Mesh Stats')
with gr.Column(scale=3 if MV_MODE else 2):
with gr.Tabs(selected='tab_img_gallery') as gallery:
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery', visible=not MV_MODE) as tab_gi:
with gr.Row():
gr.Examples(examples=example_is, inputs=[image],
label=None, examples_per_page=18)
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I and not MV_MODE) as tab_gt:
with gr.Row():
gr.Examples(examples=example_ts, inputs=[caption],
label=None, examples_per_page=18)
with gr.Tab('MultiView to 3D Gallery', id='tab_mv_gallery', visible=MV_MODE) as tab_mv:
with gr.Row():
gr.Examples(examples=example_mvs,
inputs=[mv_image_front, mv_image_back, mv_image_left, mv_image_right],
label=None, examples_per_page=6)
gr.HTML(f"""
<div align="center">
Activated Model - Shape Generation ({args.model_path}/{args.subfolder}) ; Texture Generation ({'Hunyuan3D-2' if HAS_TEXTUREGEN else 'Unavailable'})
</div>
""")
if not HAS_TEXTUREGEN:
gr.HTML("""
<div style="margin-top: 5px;" align="center">
<b>Warning: </b>
Texture synthesis is disable due to missing requirements,
please install requirements following <a href="https://github.com/Tencent/Hunyuan3D-2?tab=readme-ov-file#install-requirements">README.md</a>to activate it.
</div>
""")
if not args.enable_t23d:
gr.HTML("""
<div style="margin-top: 5px;" align="center">
<b>Warning: </b>
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`.
</div>
""")
tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery)
if HAS_T2I:
tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery)
btn.click(
shape_generation,
inputs=[
caption,
image,
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
btn_all.click(
generation_all,
inputs=[
caption,
image,
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, file_out2, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
def on_gen_mode_change(value):
if value == 'Turbo':
return gr.update(value=5)
elif value == 'Fast':
return gr.update(value=10)
else:
return gr.update(value=30)
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps])
def on_decode_mode_change(value):
if value == 'Low':
return gr.update(value=196)
elif value == 'Standard':
return gr.update(value=256)
else:
return gr.update(value=384)
decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution])
def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num):
if file_out is None:
raise gr.Error('Please generate a mesh first.')
print(f'exporting {file_out}')
print(f'reduce face to {target_face_num}')
if export_texture:
mesh = trimesh.load(file_out2)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=True, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=True)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=True)
else:
mesh = trimesh.load(file_out)
mesh = floater_remove_worker(mesh)
mesh = degenerate_face_remove_worker(mesh)
if reduce_face:
mesh = face_reduce_worker(mesh, target_face_num)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=False, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH,
textured=False)
print(f'export to {path}')
return model_viewer_html, gr.update(value=path, interactive=True)
confirm_export.click(
lambda: gr.update(selected='export_mesh_panel'),
outputs=[tabs_output],
).then(
on_export_click,
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num],
outputs=[html_export_mesh, file_export]
)
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mv')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mv-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache-path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
MV_MODE = 'mv' in args.model_path
TURBO_MODE = 'turbo' in args.subfolder
HTML_HEIGHT = 690 if MV_MODE else 650
HTML_WIDTH = 500
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p>
<p style="color: #8d8d8d;">No mesh here.</p>
</div>
</div>
"""
INPUT_MESH_HTML = """
<div style='height: 490px; width: 100%; border-radius: 8px;
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
</div>
"""
example_is = get_example_img_list()
example_ts = get_example_txt_list()
example_mvs = get_example_mv_list()
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl']
HAS_TEXTUREGEN = False
if not args.disable_tex:
try:
from hy3dgen.texgen import Hunyuan3DPaintPipeline
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path)
if args.low_vram_mode:
texgen_worker.enable_model_cpu_offload()
# Not help much, ignore for now.
# if args.compile:
# texgen_worker.models['delight_model'].pipeline.unet.compile()
# texgen_worker.models['delight_model'].pipeline.vae.compile()
# texgen_worker.models['multiview_model'].pipeline.unet.compile()
# texgen_worker.models['multiview_model'].pipeline.vae.compile()
HAS_TEXTUREGEN = True
except Exception as e:
print(e)
print("Failed to load texture generator.")
print('Please try to install requirements by following README.md')
HAS_TEXTUREGEN = False
HAS_T2I = True
if args.enable_t23d:
from hy3dgen.text2image import HunyuanDiTPipeline
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled')
HAS_T2I = True
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.shapegen.pipelines import export_to_trimesh
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path(SAVE_DIR).absolute()
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
demo = build_app()
app = gr.mount_gradio_app(app, demo, path="/")
uvicorn.run(app, host=args.host, port=args.port)
|