File size: 9,192 Bytes
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
 
 
 
 
 
 
 
 
 
 
79cc00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b20ec
 
 
 
 
79cc00b
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
79cc00b
 
04b20ec
 
 
79cc00b
04b20ec
79cc00b
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
79cc00b
04b20ec
 
 
79cc00b
04b20ec
79cc00b
04b20ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
from transformers import (
    CLIPVisionModelWithProjection,
    CLIPVisionConfig,
    Dinov2Model,
    Dinov2Config,
)


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    return np.concatenate([emb_sin, emb_cos], axis=1)


class ImageEncoder(nn.Module):
    def __init__(
        self,
        version=None,
        config=None,
        use_cls_token=True,
        image_size=224,
        **kwargs,
    ):
        super().__init__()

        if config is None:
            self.model = self.MODEL_CLASS.from_pretrained(version)
        else:
            self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config))
        self.model.eval()
        self.model.requires_grad_(False)
        self.use_cls_token = use_cls_token
        self.size = image_size // 14
        self.num_patches = (image_size // 14) ** 2
        if self.use_cls_token:
            self.num_patches += 1

        self.transform = transforms.Compose(
            [
                transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True),
                transforms.CenterCrop(image_size),
                transforms.Normalize(
                    mean=self.mean,
                    std=self.std,
                ),
            ]
        )

    def forward(self, image, mask=None, value_range=(-1, 1), **kwargs):
        if value_range is not None:
            low, high = value_range
            image = (image - low) / (high - low)

        image = image.to(self.model.device, dtype=self.model.dtype)
        inputs = self.transform(image)
        outputs = self.model(inputs)

        last_hidden_state = outputs.last_hidden_state
        if not self.use_cls_token:
            last_hidden_state = last_hidden_state[:, 1:, :]

        return last_hidden_state

    def unconditional_embedding(self, batch_size, **kwargs):
        device = next(self.model.parameters()).device
        dtype = next(self.model.parameters()).dtype
        zero = torch.zeros(
            batch_size,
            self.num_patches,
            self.model.config.hidden_size,
            device=device,
            dtype=dtype,
        )

        return zero


class CLIPImageEncoder(ImageEncoder):
    MODEL_CLASS = CLIPVisionModelWithProjection
    MODEL_CONFIG_CLASS = CLIPVisionConfig
    mean = [0.48145466, 0.4578275, 0.40821073]
    std = [0.26862954, 0.26130258, 0.27577711]


class DinoImageEncoder(ImageEncoder):
    MODEL_CLASS = Dinov2Model
    MODEL_CONFIG_CLASS = Dinov2Config
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]


class DinoImageEncoderMV(DinoImageEncoder):
    def __init__(
        self,
        version=None,
        config=None,
        use_cls_token=True,
        image_size=224,
        view_num=4,
        **kwargs,
    ):
        super().__init__(version, config, use_cls_token, image_size, **kwargs)
        self.view_num = view_num
        self.num_patches = self.num_patches
        pos = np.arange(self.view_num, dtype=np.float32)
        view_embedding = torch.from_numpy(
            get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float()

        view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1)
        self.view_embed = view_embedding.unsqueeze(0)

    def forward(self, image, mask=None, value_range=(-1, 1), view_idxs=None):
        if value_range is not None:
            low, high = value_range
            image = (image - low) / (high - low)

        image = image.to(self.model.device, dtype=self.model.dtype)

        bs, num_views, c, h, w = image.shape
        image = image.view(bs * num_views, c, h, w)

        inputs = self.transform(image)
        outputs = self.model(inputs)

        last_hidden_state = outputs.last_hidden_state
        last_hidden_state = last_hidden_state.view(
            bs, num_views, last_hidden_state.shape[-2],
            last_hidden_state.shape[-1]
        )

        view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device)
        if view_idxs is not None:
            assert len(view_idxs) == bs
            view_embeddings = []
            for i in range(bs):
                view_idx = view_idxs[i]
                assert num_views == len(view_idx)
                view_embeddings.append(self.view_embed[:, view_idx, ...])
            view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device)

        if num_views != self.view_num:
            view_embedding = view_embedding[:, :num_views, ...]
        last_hidden_state = last_hidden_state + view_embedding
        last_hidden_state = last_hidden_state.view(bs, num_views * last_hidden_state.shape[-2],
                                                   last_hidden_state.shape[-1])
        return last_hidden_state

    def unconditional_embedding(self, batch_size, view_idxs=None, **kwargs):
        device = next(self.model.parameters()).device
        dtype = next(self.model.parameters()).dtype
        zero = torch.zeros(
            batch_size,
            self.num_patches * len(view_idxs[0]),
            self.model.config.hidden_size,
            device=device,
            dtype=dtype,
        )
        return zero


def build_image_encoder(config):
    if config['type'] == 'CLIPImageEncoder':
        return CLIPImageEncoder(**config['kwargs'])
    elif config['type'] == 'DinoImageEncoder':
        return DinoImageEncoder(**config['kwargs'])
    elif config['type'] == 'DinoImageEncoderMV':
        return DinoImageEncoderMV(**config['kwargs'])
    else:
        raise ValueError(f'Unknown image encoder type: {config["type"]}')


class DualImageEncoder(nn.Module):
    def __init__(
        self,
        main_image_encoder,
        additional_image_encoder,
    ):
        super().__init__()
        self.main_image_encoder = build_image_encoder(main_image_encoder)
        self.additional_image_encoder = build_image_encoder(additional_image_encoder)

    def forward(self, image, mask=None, **kwargs):
        outputs = {
            'main': self.main_image_encoder(image, mask=mask, **kwargs),
            'additional': self.additional_image_encoder(image, mask=mask, **kwargs),
        }
        return outputs

    def unconditional_embedding(self, batch_size, **kwargs):
        outputs = {
            'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
            'additional': self.additional_image_encoder.unconditional_embedding(batch_size, **kwargs),
        }
        return outputs


class SingleImageEncoder(nn.Module):
    def __init__(
        self,
        main_image_encoder,
    ):
        super().__init__()
        self.main_image_encoder = build_image_encoder(main_image_encoder)

    def forward(self, image, mask=None, **kwargs):
        outputs = {
            'main': self.main_image_encoder(image, mask=mask, **kwargs),
        }
        return outputs

    def unconditional_embedding(self, batch_size, **kwargs):
        outputs = {
            'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
        }
        return outputs