Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,192 Bytes
04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
from transformers import (
CLIPVisionModelWithProjection,
CLIPVisionConfig,
Dinov2Model,
Dinov2Config,
)
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
return np.concatenate([emb_sin, emb_cos], axis=1)
class ImageEncoder(nn.Module):
def __init__(
self,
version=None,
config=None,
use_cls_token=True,
image_size=224,
**kwargs,
):
super().__init__()
if config is None:
self.model = self.MODEL_CLASS.from_pretrained(version)
else:
self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config))
self.model.eval()
self.model.requires_grad_(False)
self.use_cls_token = use_cls_token
self.size = image_size // 14
self.num_patches = (image_size // 14) ** 2
if self.use_cls_token:
self.num_patches += 1
self.transform = transforms.Compose(
[
transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True),
transforms.CenterCrop(image_size),
transforms.Normalize(
mean=self.mean,
std=self.std,
),
]
)
def forward(self, image, mask=None, value_range=(-1, 1), **kwargs):
if value_range is not None:
low, high = value_range
image = (image - low) / (high - low)
image = image.to(self.model.device, dtype=self.model.dtype)
inputs = self.transform(image)
outputs = self.model(inputs)
last_hidden_state = outputs.last_hidden_state
if not self.use_cls_token:
last_hidden_state = last_hidden_state[:, 1:, :]
return last_hidden_state
def unconditional_embedding(self, batch_size, **kwargs):
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
zero = torch.zeros(
batch_size,
self.num_patches,
self.model.config.hidden_size,
device=device,
dtype=dtype,
)
return zero
class CLIPImageEncoder(ImageEncoder):
MODEL_CLASS = CLIPVisionModelWithProjection
MODEL_CONFIG_CLASS = CLIPVisionConfig
mean = [0.48145466, 0.4578275, 0.40821073]
std = [0.26862954, 0.26130258, 0.27577711]
class DinoImageEncoder(ImageEncoder):
MODEL_CLASS = Dinov2Model
MODEL_CONFIG_CLASS = Dinov2Config
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
class DinoImageEncoderMV(DinoImageEncoder):
def __init__(
self,
version=None,
config=None,
use_cls_token=True,
image_size=224,
view_num=4,
**kwargs,
):
super().__init__(version, config, use_cls_token, image_size, **kwargs)
self.view_num = view_num
self.num_patches = self.num_patches
pos = np.arange(self.view_num, dtype=np.float32)
view_embedding = torch.from_numpy(
get_1d_sincos_pos_embed_from_grid(self.model.config.hidden_size, pos)).float()
view_embedding = view_embedding.unsqueeze(1).repeat(1, self.num_patches, 1)
self.view_embed = view_embedding.unsqueeze(0)
def forward(self, image, mask=None, value_range=(-1, 1), view_idxs=None):
if value_range is not None:
low, high = value_range
image = (image - low) / (high - low)
image = image.to(self.model.device, dtype=self.model.dtype)
bs, num_views, c, h, w = image.shape
image = image.view(bs * num_views, c, h, w)
inputs = self.transform(image)
outputs = self.model(inputs)
last_hidden_state = outputs.last_hidden_state
last_hidden_state = last_hidden_state.view(
bs, num_views, last_hidden_state.shape[-2],
last_hidden_state.shape[-1]
)
view_embedding = self.view_embed.to(last_hidden_state.dtype).to(last_hidden_state.device)
if view_idxs is not None:
assert len(view_idxs) == bs
view_embeddings = []
for i in range(bs):
view_idx = view_idxs[i]
assert num_views == len(view_idx)
view_embeddings.append(self.view_embed[:, view_idx, ...])
view_embedding = torch.cat(view_embeddings, 0).to(last_hidden_state.dtype).to(last_hidden_state.device)
if num_views != self.view_num:
view_embedding = view_embedding[:, :num_views, ...]
last_hidden_state = last_hidden_state + view_embedding
last_hidden_state = last_hidden_state.view(bs, num_views * last_hidden_state.shape[-2],
last_hidden_state.shape[-1])
return last_hidden_state
def unconditional_embedding(self, batch_size, view_idxs=None, **kwargs):
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
zero = torch.zeros(
batch_size,
self.num_patches * len(view_idxs[0]),
self.model.config.hidden_size,
device=device,
dtype=dtype,
)
return zero
def build_image_encoder(config):
if config['type'] == 'CLIPImageEncoder':
return CLIPImageEncoder(**config['kwargs'])
elif config['type'] == 'DinoImageEncoder':
return DinoImageEncoder(**config['kwargs'])
elif config['type'] == 'DinoImageEncoderMV':
return DinoImageEncoderMV(**config['kwargs'])
else:
raise ValueError(f'Unknown image encoder type: {config["type"]}')
class DualImageEncoder(nn.Module):
def __init__(
self,
main_image_encoder,
additional_image_encoder,
):
super().__init__()
self.main_image_encoder = build_image_encoder(main_image_encoder)
self.additional_image_encoder = build_image_encoder(additional_image_encoder)
def forward(self, image, mask=None, **kwargs):
outputs = {
'main': self.main_image_encoder(image, mask=mask, **kwargs),
'additional': self.additional_image_encoder(image, mask=mask, **kwargs),
}
return outputs
def unconditional_embedding(self, batch_size, **kwargs):
outputs = {
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
'additional': self.additional_image_encoder.unconditional_embedding(batch_size, **kwargs),
}
return outputs
class SingleImageEncoder(nn.Module):
def __init__(
self,
main_image_encoder,
):
super().__init__()
self.main_image_encoder = build_image_encoder(main_image_encoder)
def forward(self, image, mask=None, **kwargs):
outputs = {
'main': self.main_image_encoder(image, mask=mask, **kwargs),
}
return outputs
def unconditional_embedding(self, batch_size, **kwargs):
outputs = {
'main': self.main_image_encoder.unconditional_embedding(batch_size, **kwargs),
}
return outputs
|