File size: 6,433 Bytes
6f34049
 
 
 
 
 
 
 
 
 
 
 
 
 
04b20ec
 
 
 
 
 
 
 
6f34049
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f34049
 
 
 
 
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f34049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import os

import torch
import torch.nn as nn
import yaml

from .attention_blocks import FourierEmbedder, Transformer, CrossAttentionDecoder
from .surface_extractors import MCSurfaceExtractor, SurfaceExtractors
from .volume_decoders import VanillaVolumeDecoder, FlashVDMVolumeDecoding, HierarchicalVolumeDecoding
from ...utils import logger, synchronize_timer, smart_load_model


class VectsetVAE(nn.Module):

    @classmethod
    @synchronize_timer('VectsetVAE Model Loading')
    def from_single_file(
        cls,
        ckpt_path,
        config_path,
        device='cuda',
        dtype=torch.float16,
        use_safetensors=None,
        **kwargs,
    ):
        # load config
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)

        # load ckpt
        if use_safetensors:
            ckpt_path = ckpt_path.replace('.ckpt', '.safetensors')
        if not os.path.exists(ckpt_path):
            raise FileNotFoundError(f"Model file {ckpt_path} not found")

        logger.info(f"Loading model from {ckpt_path}")
        if use_safetensors:
            import safetensors.torch
            ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
        else:
            ckpt = torch.load(ckpt_path, map_location='cpu', weights_only=True)

        model_kwargs = config['params']
        model_kwargs.update(kwargs)

        model = cls(**model_kwargs)
        model.load_state_dict(ckpt)
        model.to(device=device, dtype=dtype)
        return model

    @classmethod
    def from_pretrained(
        cls,
        model_path,
        device='cuda',
        dtype=torch.float16,
        use_safetensors=True,
        variant='fp16',
        subfolder='hunyuan3d-vae-v2-0',
        **kwargs,
    ):
        config_path, ckpt_path = smart_load_model(
            model_path,
            subfolder=subfolder,
            use_safetensors=use_safetensors,
            variant=variant
        )

        return cls.from_single_file(
            ckpt_path,
            config_path,
            device=device,
            dtype=dtype,
            use_safetensors=use_safetensors,
            **kwargs
        )

    def __init__(
        self,
        volume_decoder=None,
        surface_extractor=None
    ):
        super().__init__()
        if volume_decoder is None:
            volume_decoder = VanillaVolumeDecoder()
        if surface_extractor is None:
            surface_extractor = MCSurfaceExtractor()
        self.volume_decoder = volume_decoder
        self.surface_extractor = surface_extractor

    def latents2mesh(self, latents: torch.FloatTensor, **kwargs):
        with synchronize_timer('Volume decoding'):
            grid_logits = self.volume_decoder(latents, self.geo_decoder, **kwargs)
        with synchronize_timer('Surface extraction'):
            outputs = self.surface_extractor(grid_logits, **kwargs)
        return outputs

    def enable_flashvdm_decoder(
        self,
        enabled: bool = True,
        adaptive_kv_selection=True,
        topk_mode='mean',
        mc_algo='dmc',
    ):
        if enabled:
            if adaptive_kv_selection:
                self.volume_decoder = FlashVDMVolumeDecoding(topk_mode)
            else:
                self.volume_decoder = HierarchicalVolumeDecoding()
            if mc_algo not in SurfaceExtractors.keys():
                raise ValueError(f'Unsupported mc_algo {mc_algo}, available: {list(SurfaceExtractors.keys())}')
            self.surface_extractor = SurfaceExtractors[mc_algo]()
        else:
            self.volume_decoder = VanillaVolumeDecoder()
            self.surface_extractor = MCSurfaceExtractor()


class ShapeVAE(VectsetVAE):
    def __init__(
        self,
        *,
        num_latents: int,
        embed_dim: int,
        width: int,
        heads: int,
        num_decoder_layers: int,
        geo_decoder_downsample_ratio: int = 1,
        geo_decoder_mlp_expand_ratio: int = 4,
        geo_decoder_ln_post: bool = True,
        num_freqs: int = 8,
        include_pi: bool = True,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        label_type: str = "binary",
        drop_path_rate: float = 0.0,
        scale_factor: float = 1.0,
    ):
        super().__init__()
        self.geo_decoder_ln_post = geo_decoder_ln_post

        self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)

        self.post_kl = nn.Linear(embed_dim, width)

        self.transformer = Transformer(
            n_ctx=num_latents,
            width=width,
            layers=num_decoder_layers,
            heads=heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            drop_path_rate=drop_path_rate
        )

        self.geo_decoder = CrossAttentionDecoder(
            fourier_embedder=self.fourier_embedder,
            out_channels=1,
            num_latents=num_latents,
            mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
            downsample_ratio=geo_decoder_downsample_ratio,
            enable_ln_post=self.geo_decoder_ln_post,
            width=width // geo_decoder_downsample_ratio,
            heads=heads // geo_decoder_downsample_ratio,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            label_type=label_type,
        )

        self.scale_factor = scale_factor
        self.latent_shape = (num_latents, embed_dim)

    def forward(self, latents):
        latents = self.post_kl(latents)
        latents = self.transformer(latents)
        return latents