Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,992 Bytes
04b20ec 79cc00b 04b20ec 79cc00b 04b20ec 79cc00b 04b20ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import cv2
import numpy as np
import torch
from PIL import Image
from einops import repeat, rearrange
def array_to_tensor(np_array):
image_pt = torch.tensor(np_array).float()
image_pt = image_pt / 255 * 2 - 1
image_pt = rearrange(image_pt, "h w c -> c h w")
image_pts = repeat(image_pt, "c h w -> b c h w", b=1)
return image_pts
class ImageProcessorV2:
def __init__(self, size=512, border_ratio=None):
self.size = size
self.border_ratio = border_ratio
@staticmethod
def recenter(image, border_ratio: float = 0.2):
""" recenter an image to leave some empty space at the image border.
Args:
image (ndarray): input image, float/uint8 [H, W, 3/4]
mask (ndarray): alpha mask, bool [H, W]
border_ratio (float, optional): border ratio, image will be resized to (1 - border_ratio). Defaults to 0.2.
Returns:
ndarray: output image, float/uint8 [H, W, 3/4]
"""
if image.shape[-1] == 4:
mask = image[..., 3]
else:
mask = np.ones_like(image[..., 0:1]) * 255
image = np.concatenate([image, mask], axis=-1)
mask = mask[..., 0]
H, W, C = image.shape
size = max(H, W)
result = np.zeros((size, size, C), dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
if h == 0 or w == 0:
raise ValueError('input image is empty')
desired_size = int(size * (1 - border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (size - h2) // 2
x2_max = x2_min + h2
y2_min = (size - w2) // 2
y2_max = y2_min + w2
result[x2_min:x2_max, y2_min:y2_max] = cv2.resize(image[x_min:x_max, y_min:y_max], (w2, h2),
interpolation=cv2.INTER_AREA)
bg = np.ones((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255
mask = result[..., 3:].astype(np.float32) / 255
result = result[..., :3] * mask + bg * (1 - mask)
mask = mask * 255
result = result.clip(0, 255).astype(np.uint8)
mask = mask.clip(0, 255).astype(np.uint8)
return result, mask
def load_image(self, image, border_ratio=0.15, to_tensor=True):
if isinstance(image, str):
image = cv2.imread(image, cv2.IMREAD_UNCHANGED)
image, mask = self.recenter(image, border_ratio=border_ratio)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
elif isinstance(image, Image.Image):
image = image.convert("RGBA")
image = np.asarray(image)
image, mask = self.recenter(image, border_ratio=border_ratio)
image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_CUBIC)
mask = cv2.resize(mask, (self.size, self.size), interpolation=cv2.INTER_NEAREST)
mask = mask[..., np.newaxis]
if to_tensor:
image = array_to_tensor(image)
mask = array_to_tensor(mask)
return image, mask
def __call__(self, image, border_ratio=0.15, to_tensor=True, **kwargs):
if self.border_ratio is not None:
border_ratio = self.border_ratio
image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
outputs = {
'image': image,
'mask': mask
}
return outputs
class MVImageProcessorV2(ImageProcessorV2):
"""
view order: front, front clockwise 90, back, front clockwise 270
"""
return_view_idx = True
def __init__(self, size=512, border_ratio=None):
super().__init__(size, border_ratio)
self.view2idx = {
'front': 0,
'left': 1,
'back': 2,
'right': 3
}
def __call__(self, image_dict, border_ratio=0.15, to_tensor=True, **kwargs):
if self.border_ratio is not None:
border_ratio = self.border_ratio
images = []
masks = []
view_idxs = []
for idx, (view_tag, image) in enumerate(image_dict.items()):
view_idxs.append(self.view2idx[view_tag])
image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
images.append(image)
masks.append(mask)
zipped_lists = zip(view_idxs, images, masks)
sorted_zipped_lists = sorted(zipped_lists)
view_idxs, images, masks = zip(*sorted_zipped_lists)
image = torch.cat(images, 0).unsqueeze(0)
mask = torch.cat(masks, 0).unsqueeze(0)
outputs = {
'image': image,
'mask': mask,
'view_idxs': view_idxs
}
return outputs
IMAGE_PROCESSORS = {
"v2": ImageProcessorV2,
'mv_v2': MVImageProcessorV2,
}
DEFAULT_IMAGEPROCESSOR = 'v2'
|