File size: 5,992 Bytes
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
04b20ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cc00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b20ec
 
 
 
79cc00b
04b20ec
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import cv2
import numpy as np
import torch
from PIL import Image
from einops import repeat, rearrange


def array_to_tensor(np_array):
    image_pt = torch.tensor(np_array).float()
    image_pt = image_pt / 255 * 2 - 1
    image_pt = rearrange(image_pt, "h w c -> c h w")
    image_pts = repeat(image_pt, "c h w -> b c h w", b=1)
    return image_pts


class ImageProcessorV2:
    def __init__(self, size=512, border_ratio=None):
        self.size = size
        self.border_ratio = border_ratio

    @staticmethod
    def recenter(image, border_ratio: float = 0.2):
        """ recenter an image to leave some empty space at the image border.

        Args:
            image (ndarray): input image, float/uint8 [H, W, 3/4]
            mask (ndarray): alpha mask, bool [H, W]
            border_ratio (float, optional): border ratio, image will be resized to (1 - border_ratio). Defaults to 0.2.

        Returns:
            ndarray: output image, float/uint8 [H, W, 3/4]
        """

        if image.shape[-1] == 4:
            mask = image[..., 3]
        else:
            mask = np.ones_like(image[..., 0:1]) * 255
            image = np.concatenate([image, mask], axis=-1)
            mask = mask[..., 0]

        H, W, C = image.shape

        size = max(H, W)
        result = np.zeros((size, size, C), dtype=np.uint8)

        coords = np.nonzero(mask)
        x_min, x_max = coords[0].min(), coords[0].max()
        y_min, y_max = coords[1].min(), coords[1].max()
        h = x_max - x_min
        w = y_max - y_min
        if h == 0 or w == 0:
            raise ValueError('input image is empty')
        desired_size = int(size * (1 - border_ratio))
        scale = desired_size / max(h, w)
        h2 = int(h * scale)
        w2 = int(w * scale)
        x2_min = (size - h2) // 2
        x2_max = x2_min + h2

        y2_min = (size - w2) // 2
        y2_max = y2_min + w2

        result[x2_min:x2_max, y2_min:y2_max] = cv2.resize(image[x_min:x_max, y_min:y_max], (w2, h2),
                                                          interpolation=cv2.INTER_AREA)

        bg = np.ones((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255

        mask = result[..., 3:].astype(np.float32) / 255
        result = result[..., :3] * mask + bg * (1 - mask)

        mask = mask * 255
        result = result.clip(0, 255).astype(np.uint8)
        mask = mask.clip(0, 255).astype(np.uint8)
        return result, mask

    def load_image(self, image, border_ratio=0.15, to_tensor=True):
        if isinstance(image, str):
            image = cv2.imread(image, cv2.IMREAD_UNCHANGED)
            image, mask = self.recenter(image, border_ratio=border_ratio)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        elif isinstance(image, Image.Image):
            image = image.convert("RGBA")
            image = np.asarray(image)
            image, mask = self.recenter(image, border_ratio=border_ratio)

        image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_CUBIC)
        mask = cv2.resize(mask, (self.size, self.size), interpolation=cv2.INTER_NEAREST)
        mask = mask[..., np.newaxis]

        if to_tensor:
            image = array_to_tensor(image)
            mask = array_to_tensor(mask)
        return image, mask

    def __call__(self, image, border_ratio=0.15, to_tensor=True, **kwargs):
        if self.border_ratio is not None:
            border_ratio = self.border_ratio
        image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
        outputs = {
            'image': image,
            'mask': mask
        }
        return outputs


class MVImageProcessorV2(ImageProcessorV2):
    """
    view order: front, front clockwise 90, back, front clockwise 270
    """
    return_view_idx = True

    def __init__(self, size=512, border_ratio=None):
        super().__init__(size, border_ratio)
        self.view2idx = {
            'front': 0,
            'left': 1,
            'back': 2,
            'right': 3
        }

    def __call__(self, image_dict, border_ratio=0.15, to_tensor=True, **kwargs):
        if self.border_ratio is not None:
            border_ratio = self.border_ratio

        images = []
        masks = []
        view_idxs = []
        for idx, (view_tag, image) in enumerate(image_dict.items()):
            view_idxs.append(self.view2idx[view_tag])
            image, mask = self.load_image(image, border_ratio=border_ratio, to_tensor=to_tensor)
            images.append(image)
            masks.append(mask)

        zipped_lists = zip(view_idxs, images, masks)
        sorted_zipped_lists = sorted(zipped_lists)
        view_idxs, images, masks = zip(*sorted_zipped_lists)

        image = torch.cat(images, 0).unsqueeze(0)
        mask = torch.cat(masks, 0).unsqueeze(0)
        outputs = {
            'image': image,
            'mask': mask,
            'view_idxs': view_idxs
        }
        return outputs


IMAGE_PROCESSORS = {
    "v2": ImageProcessorV2,
    'mv_v2': MVImageProcessorV2,
}

DEFAULT_IMAGEPROCESSOR = 'v2'