Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,808 Bytes
04b20ec 6f34049 04b20ec 6f34049 04b20ec 325f2b5 04b20ec 6f34049 04b20ec 6f34049 04b20ec 6f34049 04b20ec 6f34049 04b20ec 6f34049 04b20ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import logging
import numpy as np
import os
import torch
from PIL import Image
from typing import Union, Optional
from .differentiable_renderer.mesh_render import MeshRender
from .utils.dehighlight_utils import Light_Shadow_Remover
from .utils.multiview_utils import Multiview_Diffusion_Net
from .utils.imagesuper_utils import Image_Super_Net
from .utils.uv_warp_utils import mesh_uv_wrap
logger = logging.getLogger(__name__)
class Hunyuan3DTexGenConfig:
def __init__(self, light_remover_ckpt_path, multiview_ckpt_path):
self.device = 'cuda'
self.light_remover_ckpt_path = light_remover_ckpt_path
self.multiview_ckpt_path = multiview_ckpt_path
self.candidate_camera_azims = [0, 90, 180, 270, 0, 180]
self.candidate_camera_elevs = [0, 0, 0, 0, 90, -90]
self.candidate_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
self.render_size = 2048
self.texture_size = 2048
self.bake_exp = 4
self.merge_method = 'fast'
class Hunyuan3DPaintPipeline:
@classmethod
def from_pretrained(cls, model_path):
original_model_path = model_path
if not os.path.exists(model_path):
# try local path
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
model_path = os.path.expanduser(os.path.join(base_dir, model_path))
delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0')
multiview_model_path = os.path.join(model_path, 'hunyuan3d-paint-v2-0')
if not os.path.exists(delight_model_path) or not os.path.exists(multiview_model_path):
try:
import huggingface_hub
# download from huggingface
model_path = huggingface_hub.snapshot_download(repo_id=original_model_path,
allow_patterns=["hunyuan3d-delight-v2-0/*"])
model_path = huggingface_hub.snapshot_download(repo_id=original_model_path,
allow_patterns=["hunyuan3d-paint-v2-0/*"])
delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0')
multiview_model_path = os.path.join(model_path, 'hunyuan3d-paint-v2-0')
return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path))
except ImportError:
logger.warning(
"You need to install HuggingFace Hub to load models from the hub."
)
raise RuntimeError(f"Model path {model_path} not found")
else:
return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path))
raise FileNotFoundError(f"Model path {original_model_path} not found and we could not find it at huggingface")
def __init__(self, config):
self.config = config
self.models = {}
self.render = MeshRender(
default_resolution=self.config.render_size,
texture_size=self.config.texture_size)
self.load_models()
def load_models(self):
# empty cude cache
torch.cuda.empty_cache()
# Load model
self.models['delight_model'] = Light_Shadow_Remover(self.config)
self.models['multiview_model'] = Multiview_Diffusion_Net(self.config)
# self.models['super_model'] = Image_Super_Net(self.config)
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
self.models['delight_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
self.models['multiview_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True):
normal_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
normal_map = self.render.render_normal(
elev, azim, use_abs_coor=use_abs_coor, return_type='pl')
normal_maps.append(normal_map)
return normal_maps
def render_position_multiview(self, camera_elevs, camera_azims):
position_maps = []
for elev, azim in zip(camera_elevs, camera_azims):
position_map = self.render.render_position(
elev, azim, return_type='pl')
position_maps.append(position_map)
return position_maps
def bake_from_multiview(self, views, camera_elevs,
camera_azims, view_weights, method='graphcut'):
project_textures, project_weighted_cos_maps = [], []
project_boundary_maps = []
for view, camera_elev, camera_azim, weight in zip(
views, camera_elevs, camera_azims, view_weights):
project_texture, project_cos_map, project_boundary_map = self.render.back_project(
view, camera_elev, camera_azim)
project_cos_map = weight * (project_cos_map ** self.config.bake_exp)
project_textures.append(project_texture)
project_weighted_cos_maps.append(project_cos_map)
project_boundary_maps.append(project_boundary_map)
if method == 'fast':
texture, ori_trust_map = self.render.fast_bake_texture(
project_textures, project_weighted_cos_maps)
else:
raise f'no method {method}'
return texture, ori_trust_map > 1E-8
def texture_inpaint(self, texture, mask):
texture_np = self.render.uv_inpaint(texture, mask)
texture = torch.tensor(texture_np / 255).float().to(texture.device)
return texture
def recenter_image(self, image, border_ratio=0.2):
if image.mode == 'RGB':
return image
elif image.mode == 'L':
image = image.convert('RGB')
return image
alpha_channel = np.array(image)[:, :, 3]
non_zero_indices = np.argwhere(alpha_channel > 0)
if non_zero_indices.size == 0:
raise ValueError("Image is fully transparent")
min_row, min_col = non_zero_indices.min(axis=0)
max_row, max_col = non_zero_indices.max(axis=0)
cropped_image = image.crop((min_col, min_row, max_col + 1, max_row + 1))
width, height = cropped_image.size
border_width = int(width * border_ratio)
border_height = int(height * border_ratio)
new_width = width + 2 * border_width
new_height = height + 2 * border_height
square_size = max(new_width, new_height)
new_image = Image.new('RGBA', (square_size, square_size), (255, 255, 255, 0))
paste_x = (square_size - new_width) // 2 + border_width
paste_y = (square_size - new_height) // 2 + border_height
new_image.paste(cropped_image, (paste_x, paste_y))
return new_image
@torch.no_grad()
def __call__(self, mesh, image):
if isinstance(image, str):
image_prompt = Image.open(image)
else:
image_prompt = image
image_prompt = self.recenter_image(image_prompt)
image_prompt = self.models['delight_model'](image_prompt)
mesh = mesh_uv_wrap(mesh)
self.render.load_mesh(mesh)
selected_camera_elevs, selected_camera_azims, selected_view_weights = \
self.config.candidate_camera_elevs, self.config.candidate_camera_azims, self.config.candidate_view_weights
normal_maps = self.render_normal_multiview(
selected_camera_elevs, selected_camera_azims, use_abs_coor=True)
position_maps = self.render_position_multiview(
selected_camera_elevs, selected_camera_azims)
camera_info = [(((azim // 30) + 9) % 12) // {-20: 1, 0: 1, 20: 1, -90: 3, 90: 3}[
elev] + {-20: 0, 0: 12, 20: 24, -90: 36, 90: 40}[elev] for azim, elev in
zip(selected_camera_azims, selected_camera_elevs)]
multiviews = self.models['multiview_model'](image_prompt, normal_maps + position_maps, camera_info)
for i in range(len(multiviews)):
# multiviews[i] = self.models['super_model'](multiviews[i])
multiviews[i] = multiviews[i].resize(
(self.config.render_size, self.config.render_size))
texture, mask = self.bake_from_multiview(multiviews,
selected_camera_elevs, selected_camera_azims, selected_view_weights,
method=self.config.merge_method)
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
texture = self.texture_inpaint(texture, mask_np)
self.render.set_texture(texture)
textured_mesh = self.render.save_mesh()
return textured_mesh
|