Spaces:
Running
on
Zero
Running
on
Zero
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import os | |
import random | |
import shutil | |
import time | |
from glob import glob | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import trimesh | |
import uvicorn | |
from fastapi import FastAPI | |
from fastapi.staticfiles import StaticFiles | |
import uuid | |
from hy3dgen.shapegen.utils import logger | |
MAX_SEED = 1e7 | |
if True: | |
import os | |
import spaces | |
import subprocess | |
import sys | |
import shlex | |
print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") | |
os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") | |
print('install custom') | |
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True) | |
def get_example_img_list(): | |
print('Loading example img list ...') | |
return sorted(glob('./assets/example_images/**/*.png', recursive=True)) | |
def get_example_txt_list(): | |
print('Loading example txt list ...') | |
txt_list = list() | |
for line in open('./assets/example_prompts.txt', encoding='utf-8'): | |
txt_list.append(line.strip()) | |
return txt_list | |
def get_example_mv_list(): | |
print('Loading example mv list ...') | |
mv_list = list() | |
root = './assets/example_mv_images' | |
for mv_dir in os.listdir(root): | |
view_list = [] | |
for view in ['front', 'back', 'left', 'right']: | |
path = os.path.join(root, mv_dir, f'{view}.png') | |
if os.path.exists(path): | |
view_list.append(path) | |
else: | |
view_list.append(None) | |
mv_list.append(view_list) | |
return mv_list | |
def gen_save_folder(max_size=200): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
# 获取所有文件夹路径 | |
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] | |
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 | |
if len(dirs) >= max_size: | |
# 按创建时间排序,最久的排在前面 | |
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) | |
shutil.rmtree(oldest_dir) | |
print(f"Removed the oldest folder: {oldest_dir}") | |
# 生成一个新的 uuid 文件夹名称 | |
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) | |
os.makedirs(new_folder, exist_ok=True) | |
print(f"Created new folder: {new_folder}") | |
return new_folder | |
def export_mesh(mesh, save_folder, textured=False, type='glb'): | |
if textured: | |
path = os.path.join(save_folder, f'textured_mesh.{type}') | |
else: | |
path = os.path.join(save_folder, f'white_mesh.{type}') | |
if type not in ['glb', 'obj']: | |
mesh.export(path) | |
else: | |
mesh.export(path, include_normals=textured) | |
return path | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
# Remove first folder from path to make relative path | |
if textured: | |
related_path = f"./textured_mesh.glb" | |
template_name = './assets/modelviewer-textured-template.html' | |
output_html_path = os.path.join(save_folder, f'textured_mesh.html') | |
else: | |
related_path = f"./white_mesh.glb" | |
template_name = './assets/modelviewer-template.html' | |
output_html_path = os.path.join(save_folder, f'white_mesh.html') | |
offset = 50 if textured else 10 | |
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f: | |
template_html = f.read() | |
with open(output_html_path, 'w', encoding='utf-8') as f: | |
template_html = template_html.replace('#height#', f'{height - offset}') | |
template_html = template_html.replace('#width#', f'{width}') | |
template_html = template_html.replace('#src#', f'{related_path}/') | |
f.write(template_html) | |
rel_path = os.path.relpath(output_html_path, SAVE_DIR) | |
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>' | |
print( | |
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}') | |
return f""" | |
<div style='height: {height}; width: 100%;'> | |
{iframe_tag} | |
</div> | |
""" | |
def _gen_shape( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
if not MV_MODE and image is None and caption is None: | |
raise gr.Error("Please provide either a caption or an image.") | |
if MV_MODE: | |
if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None: | |
raise gr.Error("Please provide at least one view image.") | |
image = {} | |
if mv_image_front: | |
image['front'] = mv_image_front | |
if mv_image_back: | |
image['back'] = mv_image_back | |
if mv_image_left: | |
image['left'] = mv_image_left | |
if mv_image_right: | |
image['right'] = mv_image_right | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
octree_resolution = int(octree_resolution) | |
if caption: print('prompt is', caption) | |
save_folder = gen_save_folder() | |
stats = { | |
'model': { | |
'shapegen': f'{args.model_path}/{args.subfolder}', | |
'texgen': f'{args.texgen_model_path}', | |
}, | |
'params': { | |
'caption': caption, | |
'steps': steps, | |
'guidance_scale': guidance_scale, | |
'seed': seed, | |
'octree_resolution': octree_resolution, | |
'check_box_rembg': check_box_rembg, | |
'num_chunks': num_chunks, | |
} | |
} | |
time_meta = {} | |
if image is None: | |
start_time = time.time() | |
try: | |
image = t2i_worker(caption) | |
except Exception as e: | |
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") | |
time_meta['text2image'] = time.time() - start_time | |
# remove disk io to make responding faster, uncomment at your will. | |
# image.save(os.path.join(save_folder, 'input.png')) | |
if MV_MODE: | |
start_time = time.time() | |
for k, v in image.items(): | |
if check_box_rembg or v.mode == "RGB": | |
img = rmbg_worker(v.convert('RGB')) | |
image[k] = img | |
time_meta['remove background'] = time.time() - start_time | |
else: | |
if check_box_rembg or image.mode == "RGB": | |
start_time = time.time() | |
image = rmbg_worker(image.convert('RGB')) | |
time_meta['remove background'] = time.time() - start_time | |
# remove disk io to make responding faster, uncomment at your will. | |
# image.save(os.path.join(save_folder, 'rembg.png')) | |
# image to white model | |
start_time = time.time() | |
generator = torch.Generator() | |
generator = generator.manual_seed(int(seed)) | |
outputs = i23d_worker( | |
image=image, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
octree_resolution=octree_resolution, | |
num_chunks=num_chunks, | |
output_type='mesh' | |
) | |
time_meta['shape generation'] = time.time() - start_time | |
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time)) | |
tmp_start = time.time() | |
mesh = export_to_trimesh(outputs)[0] | |
time_meta['export to trimesh'] = time.time() - tmp_start | |
stats['number_of_faces'] = mesh.faces.shape[0] | |
stats['number_of_vertices'] = mesh.vertices.shape[0] | |
stats['time'] = time_meta | |
main_image = image if not MV_MODE else image['front'] | |
return mesh, main_image, save_folder, stats, seed | |
def generation_all( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
start_time_0 = time.time() | |
mesh, image, save_folder, stats, seed = _gen_shape( | |
caption, | |
image, | |
mv_image_front=mv_image_front, | |
mv_image_back=mv_image_back, | |
mv_image_left=mv_image_left, | |
mv_image_right=mv_image_right, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg, | |
num_chunks=num_chunks, | |
randomize_seed=randomize_seed, | |
) | |
path = export_mesh(mesh, save_folder, textured=False) | |
# tmp_time = time.time() | |
# mesh = floater_remove_worker(mesh) | |
# mesh = degenerate_face_remove_worker(mesh) | |
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time)) | |
# stats['time']['postprocessing'] = time.time() - tmp_time | |
tmp_time = time.time() | |
mesh = face_reduce_worker(mesh) | |
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time)) | |
stats['time']['face reduction'] = time.time() - tmp_time | |
tmp_time = time.time() | |
textured_mesh = texgen_worker(mesh, image) | |
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time)) | |
stats['time']['texture generation'] = time.time() - tmp_time | |
stats['time']['total'] = time.time() - start_time_0 | |
textured_mesh.metadata['extras'] = stats | |
path_textured = export_mesh(textured_mesh, save_folder, textured=True) | |
model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
textured=True) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
return ( | |
gr.update(value=path), | |
gr.update(value=path_textured), | |
model_viewer_html_textured, | |
stats, | |
seed, | |
) | |
def shape_generation( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
start_time_0 = time.time() | |
mesh, image, save_folder, stats, seed = _gen_shape( | |
caption, | |
image, | |
mv_image_front=mv_image_front, | |
mv_image_back=mv_image_back, | |
mv_image_left=mv_image_left, | |
mv_image_right=mv_image_right, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg, | |
num_chunks=num_chunks, | |
randomize_seed=randomize_seed, | |
) | |
stats['time']['total'] = time.time() - start_time_0 | |
mesh.metadata['extras'] = stats | |
path = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
return ( | |
gr.update(value=path), | |
model_viewer_html, | |
stats, | |
seed, | |
) | |
def build_app(): | |
title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation' | |
if MV_MODE: | |
title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views' | |
if 'mini' in args.subfolder: | |
title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator' | |
if TURBO_MODE: | |
title = title.replace(':', '-Turbo: Fast ') | |
title_html = f""" | |
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> | |
{title} | |
</div> | |
<div align="center"> | |
Tencent Hunyuan3D Team | |
</div> | |
<div align="center"> | |
<a href="https://github.com/tencent/Hunyuan3D-2">Github</a>   | |
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>   | |
<a href="https://3d.hunyuan.tencent.com">Hunyuan3D Studio</a>   | |
<a href="#">Technical Report</a>   | |
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Pretrained Models</a>   | |
</div> | |
""" | |
custom_css = """ | |
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) { | |
max-width: 1480px; | |
} | |
.mv-image button .wrap { | |
font-size: 10px; | |
} | |
.mv-image .icon-wrap { | |
width: 20px; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', analytics_enabled=False, css=custom_css) as demo: | |
gr.HTML(title_html) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Tabs(selected='tab_img_prompt') as tabs_prompt: | |
with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip: | |
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290) | |
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp: | |
caption = gr.Textbox(label='Text Prompt', | |
placeholder='HunyuanDiT will be used to generate image.', | |
info='Example: A 3D model of a cute cat, white background') | |
with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv: | |
# gr.Label('Please upload at least one front image.') | |
with gr.Row(): | |
mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140, | |
min_width=100, elem_classes='mv-image') | |
mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140, | |
min_width=100, elem_classes='mv-image') | |
with gr.Row(): | |
mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140, | |
min_width=100, elem_classes='mv-image') | |
mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140, | |
min_width=100, elem_classes='mv-image') | |
with gr.Row(): | |
btn = gr.Button(value='Gen Shape', variant='primary', min_width=100) | |
btn_all = gr.Button(value='Gen Textured Shape', | |
variant='primary', | |
visible=HAS_TEXTUREGEN, | |
min_width=100) | |
with gr.Group(): | |
file_out = gr.File(label="File", visible=False) | |
file_out2 = gr.File(label="File", visible=False) | |
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'): | |
with gr.Tab("Options", id='tab_options', visible=TURBO_MODE): | |
gen_mode = gr.Radio(label='Generation Mode', | |
info='Recommendation: Turbo for most cases, Fast for very complex cases, Standard seldom use.', | |
choices=['Turbo', 'Fast', 'Standard'], value='Turbo') | |
decode_mode = gr.Radio(label='Decoding Mode', | |
info='The resolution for exporting mesh from generated vectset', | |
choices=['Low', 'Standard', 'High'], | |
value='Standard') | |
with gr.Tab('Advanced Options', id='tab_advanced_options'): | |
with gr.Row(): | |
check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=1234, | |
min_width=100, | |
) | |
with gr.Row(): | |
num_steps = gr.Slider(maximum=100, | |
minimum=1, | |
value=5 if 'turbo' in args.subfolder else 30, | |
step=1, label='Inference Steps') | |
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') | |
with gr.Row(): | |
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100) | |
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, | |
label='Number of Chunks', min_width=100) | |
with gr.Tab("Export", id='tab_export'): | |
with gr.Row(): | |
file_type = gr.Dropdown(label='File Type', choices=SUPPORTED_FORMATS, | |
value='glb', min_width=100) | |
reduce_face = gr.Checkbox(label='Simplify Mesh', value=False, min_width=100) | |
export_texture = gr.Checkbox(label='Include Texture', value=False, | |
visible=False, min_width=100) | |
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, | |
label='Target Face Number') | |
with gr.Row(): | |
confirm_export = gr.Button(value="Transform", min_width=100) | |
file_export = gr.DownloadButton(label="Download", variant='primary', | |
interactive=False, min_width=100) | |
with gr.Column(scale=6): | |
with gr.Tabs(selected='gen_mesh_panel') as tabs_output: | |
with gr.Tab('Generated Mesh', id='gen_mesh_panel'): | |
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
with gr.Tab('Exporting Mesh', id='export_mesh_panel'): | |
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
with gr.Tab('Mesh Statistic', id='stats_panel'): | |
stats = gr.Json({}, label='Mesh Stats') | |
with gr.Column(scale=3 if MV_MODE else 2): | |
with gr.Tabs(selected='tab_img_gallery') as gallery: | |
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery', visible=not MV_MODE) as tab_gi: | |
with gr.Row(): | |
gr.Examples(examples=example_is, inputs=[image], | |
label=None, examples_per_page=18) | |
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I and not MV_MODE) as tab_gt: | |
with gr.Row(): | |
gr.Examples(examples=example_ts, inputs=[caption], | |
label=None, examples_per_page=18) | |
with gr.Tab('MultiView to 3D Gallery', id='tab_mv_gallery', visible=MV_MODE) as tab_mv: | |
with gr.Row(): | |
gr.Examples(examples=example_mvs, | |
inputs=[mv_image_front, mv_image_back, mv_image_left, mv_image_right], | |
label=None, examples_per_page=6) | |
gr.HTML(f""" | |
<div align="center"> | |
Activated Model - Shape Generation ({args.model_path}/{args.subfolder}) ; Texture Generation ({'Hunyuan3D-2' if HAS_TEXTUREGEN else 'Unavailable'}) | |
</div> | |
""") | |
if not HAS_TEXTUREGEN: | |
gr.HTML(""" | |
<div style="margin-top: 5px;" align="center"> | |
<b>Warning: </b> | |
Texture synthesis is disable due to missing requirements, | |
please install requirements following <a href="https://github.com/Tencent/Hunyuan3D-2?tab=readme-ov-file#install-requirements">README.md</a>to activate it. | |
</div> | |
""") | |
if not args.enable_t23d: | |
gr.HTML(""" | |
<div style="margin-top: 5px;" align="center"> | |
<b>Warning: </b> | |
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`. | |
</div> | |
""") | |
tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery) | |
if HAS_T2I: | |
tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery) | |
btn.click( | |
shape_generation, | |
inputs=[ | |
caption, | |
image, | |
mv_image_front, | |
mv_image_back, | |
mv_image_left, | |
mv_image_right, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
num_chunks, | |
randomize_seed, | |
], | |
outputs=[file_out, html_gen_mesh, stats, seed] | |
).then( | |
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True), | |
gr.update(interactive=False)), | |
outputs=[export_texture, reduce_face, confirm_export, file_export], | |
).then( | |
lambda: gr.update(selected='gen_mesh_panel'), | |
outputs=[tabs_output], | |
) | |
btn_all.click( | |
generation_all, | |
inputs=[ | |
caption, | |
image, | |
mv_image_front, | |
mv_image_back, | |
mv_image_left, | |
mv_image_right, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
num_chunks, | |
randomize_seed, | |
], | |
outputs=[file_out, file_out2, html_gen_mesh, stats, seed] | |
).then( | |
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True), | |
gr.update(interactive=False)), | |
outputs=[export_texture, reduce_face, confirm_export, file_export], | |
).then( | |
lambda: gr.update(selected='gen_mesh_panel'), | |
outputs=[tabs_output], | |
) | |
def on_gen_mode_change(value): | |
if value == 'Turbo': | |
return gr.update(value=5) | |
elif value == 'Fast': | |
return gr.update(value=10) | |
else: | |
return gr.update(value=30) | |
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps]) | |
def on_decode_mode_change(value): | |
if value == 'Low': | |
return gr.update(value=196) | |
elif value == 'Standard': | |
return gr.update(value=256) | |
else: | |
return gr.update(value=384) | |
decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution]) | |
def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num): | |
if file_out is None: | |
raise gr.Error('Please generate a mesh first.') | |
print(f'exporting {file_out}') | |
print(f'reduce face to {target_face_num}') | |
if export_texture: | |
mesh = trimesh.load(file_out2) | |
save_folder = gen_save_folder() | |
path = export_mesh(mesh, save_folder, textured=True, type=file_type) | |
# for preview | |
save_folder = gen_save_folder() | |
_ = export_mesh(mesh, save_folder, textured=True) | |
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
textured=True) | |
else: | |
mesh = trimesh.load(file_out) | |
mesh = floater_remove_worker(mesh) | |
mesh = degenerate_face_remove_worker(mesh) | |
if reduce_face: | |
mesh = face_reduce_worker(mesh, target_face_num) | |
save_folder = gen_save_folder() | |
path = export_mesh(mesh, save_folder, textured=False, type=file_type) | |
# for preview | |
save_folder = gen_save_folder() | |
_ = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
textured=False) | |
print(f'export to {path}') | |
return model_viewer_html, gr.update(value=path, interactive=True) | |
confirm_export.click( | |
lambda: gr.update(selected='export_mesh_panel'), | |
outputs=[tabs_output], | |
).then( | |
on_export_click, | |
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num], | |
outputs=[html_export_mesh, file_export] | |
) | |
return demo | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mv') | |
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mv-turbo') | |
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') | |
parser.add_argument('--port', type=int, default=7860) | |
parser.add_argument('--host', type=str, default='0.0.0.0') | |
parser.add_argument('--device', type=str, default='cuda') | |
parser.add_argument('--mc_algo', type=str, default='mc') | |
parser.add_argument('--cache-path', type=str, default='gradio_cache') | |
parser.add_argument('--enable_t23d', action='store_true') | |
parser.add_argument('--disable_tex', action='store_true') | |
parser.add_argument('--enable_flashvdm', action='store_true') | |
parser.add_argument('--compile', action='store_true') | |
parser.add_argument('--low_vram_mode', action='store_true') | |
args = parser.parse_args() | |
args.enable_flashvdm = True | |
SAVE_DIR = args.cache_path | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
MV_MODE = 'mv' in args.model_path | |
TURBO_MODE = 'turbo' in args.subfolder | |
HTML_HEIGHT = 690 if MV_MODE else 650 | |
HTML_WIDTH = 500 | |
HTML_OUTPUT_PLACEHOLDER = f""" | |
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> | |
<div style='text-align: center; font-size: 16px; color: #6b7280;'> | |
<p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p> | |
<p style="color: #8d8d8d;">No mesh here.</p> | |
</div> | |
</div> | |
""" | |
INPUT_MESH_HTML = """ | |
<div style='height: 490px; width: 100%; border-radius: 8px; | |
border-color: #e5e7eb; order-style: solid; border-width: 1px;'> | |
</div> | |
""" | |
example_is = get_example_img_list() | |
example_ts = get_example_txt_list() | |
example_mvs = get_example_mv_list() | |
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl'] | |
HAS_TEXTUREGEN = False | |
if not args.disable_tex: | |
try: | |
from hy3dgen.texgen import Hunyuan3DPaintPipeline | |
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path) | |
if args.low_vram_mode: | |
texgen_worker.enable_model_cpu_offload() | |
# Not help much, ignore for now. | |
# if args.compile: | |
# texgen_worker.models['delight_model'].pipeline.unet.compile() | |
# texgen_worker.models['delight_model'].pipeline.vae.compile() | |
# texgen_worker.models['multiview_model'].pipeline.unet.compile() | |
# texgen_worker.models['multiview_model'].pipeline.vae.compile() | |
HAS_TEXTUREGEN = True | |
except Exception as e: | |
print(e) | |
print("Failed to load texture generator.") | |
print('Please try to install requirements by following README.md') | |
HAS_TEXTUREGEN = False | |
HAS_T2I = True | |
if args.enable_t23d: | |
from hy3dgen.text2image import HunyuanDiTPipeline | |
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled') | |
HAS_T2I = True | |
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ | |
Hunyuan3DDiTFlowMatchingPipeline | |
from hy3dgen.shapegen.pipelines import export_to_trimesh | |
from hy3dgen.rembg import BackgroundRemover | |
rmbg_worker = BackgroundRemover() | |
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( | |
args.model_path, | |
subfolder=args.subfolder, | |
use_safetensors=True, | |
device=args.device, | |
) | |
if args.enable_flashvdm: | |
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo | |
i23d_worker.enable_flashvdm(mc_algo=mc_algo) | |
if args.compile: | |
i23d_worker.compile() | |
floater_remove_worker = FloaterRemover() | |
degenerate_face_remove_worker = DegenerateFaceRemover() | |
face_reduce_worker = FaceReducer() | |
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
# create a FastAPI app | |
app = FastAPI() | |
# create a static directory to store the static files | |
static_dir = Path(SAVE_DIR).absolute() | |
static_dir.mkdir(parents=True, exist_ok=True) | |
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static") | |
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
demo = build_app() | |
app = gr.mount_gradio_app(app, demo, path="/") | |
uvicorn.run(app, host=args.host, port=args.port) | |